predict模式用于在新图像或视频上使用经过训练的YOLOv8
模型进行预测,在此模式下,模型从checkpoint
文件加载,用户可以提供图像或视频来执行推理。模型预测输入图像或视频中对象的类别和位置。
from ultralytics import YOLO
from PIL import Image
import cv2
model = YOLO("model.pt")
# 接受所有格式-image/dir/Path/URL/video/PIL/ndarray。0用于网络摄像头
results = model.predict(source="0")
results = model.predict(source="folder", show=True) # 展示预测结果
# from PIL
im1 = Image.open("bus.jpg")
results = model.predict(source=im1, save=True) # 保存绘制的图像
# from ndarray
im2 = cv2.imread("bus.jpg")
results = model.predict(source=im2, save=True, save_txt=True) # 将预测保存为标签
# from list of PIL/ndarray
results = model.predict(source=[im1, im2])
YOLOv8
预测模式可以为各种任务生成预测,在使用流模式时返回结果对象列表或结果对象的内存高效生成器。通过在预测器的调用方法中传递stream=True
来启用流模式。stream=True
的流媒体模式应用于长视频或大型预测源,否则结果将在内存中累积并最终导致内存不足错误。
inputs = [img, img] # list of numpy arrays
results = model(inputs, stream=True) # generator of Results objects
for result in results:
boxes = result.boxes # Boxes object for bbox outputs
masks = result.masks # Masks object for segmentation masks outputs
probs = result.probs # Class probabilities for classification outputs
相关参数如下:
Key | Value | Description |
---|---|---|
source |
'ultralytics/assets' |
source directory for images or videos |
conf |
0.25 |
object confidence threshold for detection |
iou |
0.7 |
intersection over union (IoU) threshold for NMS |
half |
False |
use half precision (FP16) |
device |
None |
device to run on, i.e. cuda device=0/1/2/3 or device=cpu |
show |
False |
show results if possible |
save |
False |
save images with results |
save_txt |
False |
save results as .txt file |
save_conf |
False |
save results with confidence scores |
save_crop |
False |
save cropped images with results |
hide_labels |
False |
hide labels |
hide_conf |
False |
hide confidence scores |
max_det |
300 |
maximum number of detections per image |
vid_stride |
False |
video frame-rate stride |
line_thickness |
3 |
bounding box thickness (pixels) |
visualize |
False |
visualize model features |
augment |
False |
apply image augmentation to prediction sources |
agnostic_nms |
False |
class-agnostic NMS |
retina_masks |
False |
use high-resolution segmentation masks |
classes |
None |
filter results by class, i.e. class=0, or class=[0,2,3] |
boxes |
True |
Show boxes in segmentation predictions |
YOLOv8
可以接受各种输入源,如下表所示。这包括图像、URL、PIL图像、OpenCV、numpy数组、torch张量、CSV文件、视频、目录、全局、YouTube视频和流。该表指示每个源是否可以在流模式下使用stream=True✅以及每个源的示例参数。
source | model(arg) | type | notes |
---|---|---|---|
image | 'im.jpg' |
str , Path
|
|
URL | 'https://ultralytics.com/images/bus.jpg' |
str |
|
screenshot | 'screen' |
str |
|
PIL | Image.open('im.jpg') |
PIL.Image |
HWC, RGB |
OpenCV | cv2.imread('im.jpg')[:,:,::-1] |
np.ndarray |
HWC, BGR to RGB |
numpy | np.zeros((640,1280,3)) |
np.ndarray |
HWC |
torch | torch.zeros(16,3,320,640) |
torch.Tensor |
BCHW, RGB |
CSV | 'sources.csv' |
str , Path
|
RTSP, RTMP, HTTP |
video ✅ | 'vid.mp4' |
str , Path
|
|
directory ✅ | 'path/' |
str , Path
|
|
glob ✅ | 'path/*.jpg' |
str |
Use * operator |
YouTube ✅ | 'https://youtu.be/Zgi9g1ksQHc' |
str |
|
stream ✅ | 'rtsp://example.com/media.mp4' |
str |
RTSP, RTMP, HTTP |
图像类型
Image Suffixes | Example Predict Command | Reference |
---|---|---|
.bmp | yolo predict source=image.bmp |
Microsoft BMP File Format |
.dng | yolo predict source=image.dng |
Adobe DNG |
.jpeg | yolo predict source=image.jpeg |
JPEG |
.jpg | yolo predict source=image.jpg |
JPEG |
.mpo | yolo predict source=image.mpo |
Multi Picture Object |
.png | yolo predict source=image.png |
Portable Network Graphics |
.tif | yolo predict source=image.tif |
Tag Image File Format |
.tiff | yolo predict source=image.tiff |
Tag Image File Format |
.webp | yolo predict source=image.webp |
WebP |
.pfm | yolo predict source=image.pfm |
Portable FloatMap |
视频类型
Video Suffixes | Example Predict Command | Reference |
---|---|---|
.asf | yolo predict source=video.asf |
Advanced Systems Format |
.avi | yolo predict source=video.avi |
Audio Video Interleave |
.gif | yolo predict source=video.gif |
Graphics Interchange Format |
.m4v | yolo predict source=video.m4v |
MPEG-4 Part 14 |
.mkv | yolo predict source=video.mkv |
Matroska |
.mov | yolo predict source=video.mov |
QuickTime File Format |
.mp4 | yolo predict source=video.mp4 |
MPEG-4 Part 14 - Wikipedia |
.mpeg | yolo predict source=video.mpeg |
MPEG-1 Part 2 |
.mpg | yolo predict source=video.mpg |
MPEG-1 Part 2 |
.ts | yolo predict source=video.ts |
MPEG Transport Stream |
.wmv | yolo predict source=video.wmv |
Windows Media Video |
.webm | yolo predict source=video.webm |
WebM Project |
预测结果对象包含以下组件:
Results.boxes:
— 具有用于操作边界框的属性和方法的boxes
Results.masks:
— 用于索引掩码或获取段坐标的掩码对象
Results.probs:
— 包含类概率或logits
Results.orig_img:
— 载入内存的原始图像
Results.path:
— 包含输入图像路径的路径
默认情况下,每个结果都由一个torch. Tensor组成,它允许轻松操作:
results = results.cuda()
results = results.cpu()
results = results.to('cpu')
results = results.numpy()
from ultralytics import YOLO
import cv2
from ultralytics.yolo.utils.benchmarks import benchmark
model = YOLO("yolov8-seg.yaml").load('yolov8n-seg.pt')
results = model.predict(r'E:\CS\DL\yolo\yolov8study\bus.jpg')
boxes = results[0].boxes
masks = results[0].masks
probs = results[0].probs
print(f"boxes:{boxes[0]}")
print(f"masks:{masks.xy }")
print(f"probs:{probs}")
output:
image 1/1 E:\CS\DL\yolo\yolov8study\bus.jpg: 640x480 4 0s, 1 5, 1 36, 25.9ms
Speed: 4.0ms preprocess, 25.9ms inference, 10.0ms postprocess per image at shape (1, 3, 640, 640)
WARNING 'Boxes.boxes' is deprecated. Use 'Boxes.data' instead.
boxes:ultralytics.yolo.engine.results.Boxes object with attributes:
boxes: tensor([[670.1221, 389.6674, 809.4929, 876.5032, 0.8875, 0.0000]], device='cuda:0')
cls: tensor([0.], device='cuda:0')
conf: tensor([0.8875], device='cuda:0')
data: tensor([[670.1221, 389.6674, 809.4929, 876.5032, 0.8875, 0.0000]], device='cuda:0')
id: None
is_track: False
orig_shape: tensor([1080, 810], device='cuda:0')
shape: torch.Size([1, 6])
xywh: tensor([[739.8075, 633.0853, 139.3708, 486.8358]], device='cuda:0')
xywhn: tensor([[0.9133, 0.5862, 0.1721, 0.4508]], device='cuda:0')
xyxy: tensor([[670.1221, 389.6674, 809.4929, 876.5032]], device='cuda:0')
xyxyn: tensor([[0.8273, 0.3608, 0.9994, 0.8116]], device='cuda:0')
masks:[array([[ 804.94, 391.5],
[ 794.81, 401.62],
[ 794.81, 403.31],
[ 791.44, 406.69],
......
probs:None
我们可以使用Result对象的plot()
函数在图像对象中绘制结果。它绘制在结果对象中找到的所有组件(框、掩码、分类日志等)
annotated_frame = results[0].plot()
# Display the annotated frame
cv2.imshow("YOLOv8 Inference", annotated_frame)
cv2.waitKey()
cv2.destroyAllWindows()
使用OpenCV(cv2)和YOLOv8对视频帧运行推理的Python脚本。文章来源:https://www.toymoban.com/news/detail-458439.html
import cv2
from ultralytics import YOLO
# Load the YOLOv8 model
model = model = YOLO("yolov8-seg.yaml").load('yolov8n-seg.pt')
# Open the video file
video_path = "sample.mp4"
cap = cv2.VideoCapture(video_path)
# Loop through the video frames
while cap.isOpened():
# Read a frame from the video
success, frame = cap.read()
if success:
# Run YOLOv8 inference on the frame
results = model(frame)
# Visualize the results on the frame
annotated_frame = results[0].plot()
# Display the annotated frame
cv2.imshow("YOLOv8 Inference", annotated_frame)
# Break the loop if 'q' is pressed
if cv2.waitKey(1) & 0xFF == ord("q"):
break
else:
# Break the loop if the end of the video is reached
break
# Release the video capture object and close the display window
cap.release()
cv2.destroyAllWindows()
文章来源地址https://www.toymoban.com/news/detail-458439.html
到了这里,关于【目标检测】YOLOV8实战入门(五)模型预测的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!