【目标检测】YOLOV8实战入门(五)模型预测

这篇具有很好参考价值的文章主要介绍了【目标检测】YOLOV8实战入门(五)模型预测。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。


predict模式用于在新图像或视频上使用经过训练的YOLOv8模型进行预测,在此模式下,模型从checkpoint 文件加载,用户可以提供图像或视频来执行推理。模型预测输入图像或视频中对象的类别和位置。

from ultralytics import YOLO
from PIL import Image
import cv2

model = YOLO("model.pt")
# 接受所有格式-image/dir/Path/URL/video/PIL/ndarray。0用于网络摄像头
results = model.predict(source="0")
results = model.predict(source="folder", show=True) # 展示预测结果

# from PIL
im1 = Image.open("bus.jpg")
results = model.predict(source=im1, save=True)  # 保存绘制的图像

# from ndarray
im2 = cv2.imread("bus.jpg")
results = model.predict(source=im2, save=True, save_txt=True)  # 将预测保存为标签

# from list of PIL/ndarray
results = model.predict(source=[im1, im2])

YOLOv8预测模式可以为各种任务生成预测,在使用流模式时返回结果对象列表或结果对象的内存高效生成器。通过在预测器的调用方法中传递stream=True来启用流模式。stream=True的流媒体模式应用于长视频或大型预测源,否则结果将在内存中累积并最终导致内存不足错误。

inputs = [img, img]  # list of numpy arrays
results = model(inputs, stream=True)  # generator of Results objects

for result in results:
    boxes = result.boxes  # Boxes object for bbox outputs
    masks = result.masks  # Masks object for segmentation masks outputs
    probs = result.probs  # Class probabilities for classification outputs

相关参数如下

Key Value Description
source 'ultralytics/assets' source directory for images or videos
conf 0.25 object confidence threshold for detection
iou 0.7 intersection over union (IoU) threshold for NMS
half False use half precision (FP16)
device None device to run on, i.e. cuda device=0/1/2/3 or device=cpu
show False show results if possible
save False save images with results
save_txt False save results as .txt file
save_conf False save results with confidence scores
save_crop False save cropped images with results
hide_labels False hide labels
hide_conf False hide confidence scores
max_det 300 maximum number of detections per image
vid_stride False video frame-rate stride
line_thickness 3 bounding box thickness (pixels)
visualize False visualize model features
augment False apply image augmentation to prediction sources
agnostic_nms False class-agnostic NMS
retina_masks False use high-resolution segmentation masks
classes None filter results by class, i.e. class=0, or class=[0,2,3]
boxes True Show boxes in segmentation predictions

YOLOv8可以接受各种输入源,如下表所示。这包括图像、URL、PIL图像、OpenCV、numpy数组、torch张量、CSV文件、视频、目录、全局、YouTube视频和流。该表指示每个源是否可以在流模式下使用stream=True✅以及每个源的示例参数。

source model(arg) type notes
image 'im.jpg' str, Path
URL 'https://ultralytics.com/images/bus.jpg' str
screenshot 'screen' str
PIL Image.open('im.jpg') PIL.Image HWC, RGB
OpenCV cv2.imread('im.jpg')[:,:,::-1] np.ndarray HWC, BGR to RGB
numpy np.zeros((640,1280,3)) np.ndarray HWC
torch torch.zeros(16,3,320,640) torch.Tensor BCHW, RGB
CSV 'sources.csv' str, Path RTSP, RTMP, HTTP
video ✅ 'vid.mp4' str, Path
directory ✅ 'path/' str, Path
glob ✅ 'path/*.jpg' str Use * operator
YouTube ✅ 'https://youtu.be/Zgi9g1ksQHc' str
stream ✅ 'rtsp://example.com/media.mp4' str RTSP, RTMP, HTTP

图像类型

Image Suffixes Example Predict Command Reference
.bmp yolo predict source=image.bmp Microsoft BMP File Format
.dng yolo predict source=image.dng Adobe DNG
.jpeg yolo predict source=image.jpeg JPEG
.jpg yolo predict source=image.jpg JPEG
.mpo yolo predict source=image.mpo Multi Picture Object
.png yolo predict source=image.png Portable Network Graphics
.tif yolo predict source=image.tif Tag Image File Format
.tiff yolo predict source=image.tiff Tag Image File Format
.webp yolo predict source=image.webp WebP
.pfm yolo predict source=image.pfm Portable FloatMap

视频类型

Video Suffixes Example Predict Command Reference
.asf yolo predict source=video.asf Advanced Systems Format
.avi yolo predict source=video.avi Audio Video Interleave
.gif yolo predict source=video.gif Graphics Interchange Format
.m4v yolo predict source=video.m4v MPEG-4 Part 14
.mkv yolo predict source=video.mkv Matroska
.mov yolo predict source=video.mov QuickTime File Format
.mp4 yolo predict source=video.mp4 MPEG-4 Part 14 - Wikipedia
.mpeg yolo predict source=video.mpeg MPEG-1 Part 2
.mpg yolo predict source=video.mpg MPEG-1 Part 2
.ts yolo predict source=video.ts MPEG Transport Stream
.wmv yolo predict source=video.wmv Windows Media Video
.webm yolo predict source=video.webm WebM Project

预测结果对象包含以下组件:

Results.boxes: — 具有用于操作边界框的属性和方法的boxes

Results.masks: — 用于索引掩码或获取段坐标的掩码对象

Results.probs: — 包含类概率或logits

Results.orig_img: — 载入内存的原始图像

Results.path: — 包含输入图像路径的路径

默认情况下,每个结果都由一个torch. Tensor组成,它允许轻松操作:

results = results.cuda()
results = results.cpu()
results = results.to('cpu')
results = results.numpy()

from ultralytics import YOLO
import cv2
from ultralytics.yolo.utils.benchmarks import benchmark

model = YOLO("yolov8-seg.yaml").load('yolov8n-seg.pt')
results = model.predict(r'E:\CS\DL\yolo\yolov8study\bus.jpg')
boxes = results[0].boxes
masks = results[0].masks
probs = results[0].probs 
print(f"boxes:{boxes[0]}")
print(f"masks:{masks.xy }")
print(f"probs:{probs}")

output:

image 1/1 E:\CS\DL\yolo\yolov8study\bus.jpg: 640x480 4 0s, 1 5, 1 36, 25.9ms
Speed: 4.0ms preprocess, 25.9ms inference, 10.0ms postprocess per image at shape (1, 3, 640, 640)
WARNING  'Boxes.boxes' is deprecated. Use 'Boxes.data' instead.
boxes:ultralytics.yolo.engine.results.Boxes object with attributes:

boxes: tensor([[670.1221, 389.6674, 809.4929, 876.5032,   0.8875,   0.0000]], device='cuda:0')   
cls: tensor([0.], device='cuda:0')
conf: tensor([0.8875], device='cuda:0')
data: tensor([[670.1221, 389.6674, 809.4929, 876.5032,   0.8875,   0.0000]], device='cuda:0')    
id: None
is_track: False
orig_shape: tensor([1080,  810], device='cuda:0')
shape: torch.Size([1, 6])
xywh: tensor([[739.8075, 633.0853, 139.3708, 486.8358]], device='cuda:0')
xywhn: tensor([[0.9133, 0.5862, 0.1721, 0.4508]], device='cuda:0')
xyxy: tensor([[670.1221, 389.6674, 809.4929, 876.5032]], device='cuda:0')
xyxyn: tensor([[0.8273, 0.3608, 0.9994, 0.8116]], device='cuda:0')
masks:[array([[     804.94,       391.5],
       [     794.81,      401.62],
       [     794.81,      403.31],
       [     791.44,      406.69],
       ......
probs:None

我们可以使用Result对象的plot()函数在图像对象中绘制结果。它绘制在结果对象中找到的所有组件(框、掩码、分类日志等)

annotated_frame = results[0].plot()
# Display the annotated frame
cv2.imshow("YOLOv8 Inference", annotated_frame)
cv2.waitKey()
cv2.destroyAllWindows()

【目标检测】YOLOV8实战入门(五)模型预测


使用OpenCV(cv2)和YOLOv8对视频帧运行推理的Python脚本。

import cv2
from ultralytics import YOLO

# Load the YOLOv8 model
model = model = YOLO("yolov8-seg.yaml").load('yolov8n-seg.pt')

# Open the video file
video_path = "sample.mp4"
cap = cv2.VideoCapture(video_path)

# Loop through the video frames
while cap.isOpened():
    # Read a frame from the video
    success, frame = cap.read()

    if success:
        # Run YOLOv8 inference on the frame
        results = model(frame)

        # Visualize the results on the frame
        annotated_frame = results[0].plot()

        # Display the annotated frame
        cv2.imshow("YOLOv8 Inference", annotated_frame)

        # Break the loop if 'q' is pressed
        if cv2.waitKey(1) & 0xFF == ord("q"):
            break
    else:
        # Break the loop if the end of the video is reached
        break

# Release the video capture object and close the display window
cap.release()
cv2.destroyAllWindows()

【目标检测】YOLOV8实战入门(五)模型预测文章来源地址https://www.toymoban.com/news/detail-458439.html

到了这里,关于【目标检测】YOLOV8实战入门(五)模型预测的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【YOLOv8】实战一:手把手教你使用YOLOv8实现实时目标检测

    ‍‍🏡博客主页: virobotics的CSDN博客:LabVIEW深度学习、人工智能博主 🎄所属专栏:『LabVIEW深度学习实战』 🍻上期文章: LabVIEW+OpenCV快速搭建人脸识别系统(附源码)) 📰如觉得博主文章写的不错或对你有所帮助的话,还望大家多多支持呀! 欢迎大家✌关注、👍点赞、✌收

    2024年02月02日
    浏览(47)
  • 目标检测再升级!YOLOv8模型训练和部署

    YOLOv8 是 Ultralytics 开发的 YOLO(You Only Look Once)物体检测和图像分割模型的最新版本。YOLOv8是一种尖端的、最先进的SOTA模型,它建立在先前YOLO成功基础上,并引入了新功能和改进,以进一步提升性能和灵活性。它可以在大型数据集上进行训练,并且能够在各种硬件平台上运行

    2024年01月20日
    浏览(45)
  • 基于YOLOV8模型的海上船只目标检测系统(PyTorch+Pyside6+YOLOv8模型)

    摘要:基于YOLOV8模型的海上船只目标检测系统用于日常生活中检测与定位海上船只目标(散装货船(bulk cargo carrier)、集装箱船(container ship)、渔船(fishing boat)、普通货船(general cargo ship)、矿石船(ore carrier)和客轮(passenger ship)),利用深度学习算法可实现图片、视

    2024年02月09日
    浏览(55)
  • 【深度学习】YOLOv8训练过程,YOLOv8实战教程,目标检测任务SOTA,关键点回归

    https://github.com/ultralytics/ultralytics 官方教程:https://docs.ultralytics.com/modes/train/ 更建议下载代码后使用 下面指令安装,这样可以更改源码,如果不需要更改源码就直接pip install ultralytics也是可以的。 这样安装后,可以直接修改yolov8源码,并且可以立即生效。此图是命令解释: 安

    2024年02月10日
    浏览(56)
  • 基于YOLOv8模型的深海鱼目标检测系统(PyTorch+Pyside6+YOLOv8模型)

    摘要:基于YOLOv8模型和BDD数据集的自动驾驶目标检测系统可用于日常生活与海洋中检测与定位深海鱼目标,利用深度学习算法可实现图片、视频、摄像头等方式的目标检测,另外本系统还支持图片、视频等格式的结果可视化与结果导出。本系统采用YOLOv8目标检测算法训练数据

    2024年02月07日
    浏览(41)
  • 基于YOLOV8模型的西红柿目标检测系统(PyTorch+Pyside6+YOLOv8模型)

    摘要:基于YOLOV8模型的西红柿目标检测系统可用于日常生活中检测与定位西红柿目标,利用深度学习算法可实现图片、视频、摄像头等方式的目标检测,另外本系统还支持图片、视频等格式的结果可视化与结果导出。本系统采用YOLOv8目标检测算法训练数据集,使用Pysdie6库来搭

    2024年02月11日
    浏览(44)
  • YOLOV8目标检测——最全最完整模型训练过程记录

    本文记录一下yolov8训练目标检测模型的过程,以及其中的一些需要注意的地方。本人是yolov5直接使用的yolov8,因此本文也记录了与yolov5的训练过程不一样的地方。 原创声明:如有转载请注明文章来源。码字不易,如对卿有所帮助,欢迎评论、点赞、收藏。 这边说一下,pip这

    2024年02月07日
    浏览(51)
  • 基于YOLOV8模型的农作机器和行人目标检测系统(PyTorch+Pyside6+YOLOv8模型)

    摘要:基于YOLOV8模型的农作机器和行人目标检测系统可用于日常生活中检测与定位农作机和行人目标,利用深度学习算法可实现图片、视频、摄像头等方式的目标检测,另外本系统还支持图片、视频等格式的结果可视化与结果导出。本系统采用YOLOv8目标检测算法训练数据集,

    2024年02月10日
    浏览(55)
  • 基于YOLOv8模型的五类动物目标检测系统(PyTorch+Pyside6+YOLOv8模型)

    摘要:基于YOLOv8模型的五类动物目标检测系统可用于日常生活中检测与定位动物目标(狼、鹿、猪、兔和浣熊),利用深度学习算法可实现图片、视频、摄像头等方式的目标检测,另外本系统还支持图片、视频等格式的结果可视化与结果导出。本系统采用YOLOv8目标检测算法训

    2024年02月12日
    浏览(40)
  • 基于YOLOV8模型和CCPD数据集的车牌目标检测系统(PyTorch+Pyside6+YOLOv8模型)

    摘要:基于YOLOV8模型和CCPD数据集的车牌目标检测系统可用于日常生活中检测与定位车牌目标,利用深度学习算法可实现图片、视频、摄像头等方式的目标检测,另外本系统还支持图片、视频等格式的结果可视化与结果导出。本系统采用YOLOv8目标检测算法训练数据集,使用Py

    2024年02月10日
    浏览(55)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包