YOLOV5入门讲解+常用数据集

这篇具有很好参考价值的文章主要介绍了YOLOV5入门讲解+常用数据集。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

 大家好,我是csdn的博主:lqj_本人

这是我的个人博客主页:

lqj_本人的博客_CSDN博客-微信小程序,前端,python领域博主lqj_本人擅长微信小程序,前端,python,等方面的知识https://blog.csdn.net/lbcyllqj?spm=1011.2415.3001.5343哔哩哔哩欢迎关注:小淼Develop

小淼Develop的个人空间-小淼Develop个人主页-哔哩哔哩视频

本篇文章主要讲述python的计算机视觉【YOLOV5目标检测模型】,本篇文章已经成功收录YOLOV5系列从入门到实战专栏中:

https://blog.csdn.net/lbcyllqj/category_12307626.html?spm=1001.2014.3001.5482https://blog.csdn.net/lbcyllqj/category_12307626.html?spm=1001.2014.3001.5482

什么是YOLO

YOLO是目标检测模型。

目标检测是计算机视觉中比较简单的任务,用来在一张图篇中找到某些特定的物体,目标检测不仅要求我们识别这些物体的种类,同时要求我们标出这些物体的位置

显然,类别是离散数据,位置是连续数据。

YOLOV5入门讲解+常用数据集

上面的图片中,分别是计算机视觉的三类任务:分类,目标检测,实例分割。

很显然,整体上这三类任务从易到难,我们要讨论的目标检测位于中间。前面的分类任务是我们做目标检测的基础,至于像素级别的实例分割,太难了别想了。

YOLO在2016年被提出,发表在计算机视觉顶会CVPR(Computer Vision and Pattern Recognition)上。

YOLO的全称是you only look once,指只需要浏览一次就可以识别出图中的物体的类别和位置。

因为只需要看一次,YOLO被称为Region-free方法,相比于Region-based方法,YOLO不需要提前找到可能存在目标的Region

也就是说,一个典型的Region-base方法的流程是这样的:先通过计算机图形学(或者深度学习)的方法,对图片进行分析,找出若干个可能存在物体的区域,将这些区域裁剪下来,放入一个图片分类器中,由分类器分类。

因为YOLO这样的Region-free方法只需要一次扫描,也被称为单阶段(1-stage)模型。Region-based方法方法也被称为两阶段(2-stage)方法。

YOLO之前的世界

YOLO之前的世界,额,其实是R-CNN什么的,也就是我们前面说的Region-based方法,但是感觉还是太高端了。我们从用脚都能想到的目标检测方法开始讲起。

如果我们现在有一个分类器:

YOLOV5入门讲解+常用数据集

但是,我们不仅仅想处理这种一张图片中只有一个物体的图片,我们现在想处理有多个物体的图片。

那么该这样做:

首先有几点我们要实现想到:首先物体的位置是不确定的,你没办法保证物体一定在最中间;其次,物体的大小是不确定的,有的物体比较大,也有的物体比较小,注意,这里不是说大象一定更大,猫咪一定更小,毕竟还有近大远小嘛;然后,我们还没办法保证物体的种类,假设我们有一个可以识别100中物体的分类器,那么起码图片中出现了这100种物体我们都要识别出来。

比如说这样:

YOLOV5入门讲解+常用数据集

YOLO原理

目标检测是基于监督学习的,每张图片的监督信息是它所包含的N个物体,每个物体的信息有五个,分别是物体的中心位置(x,y)和它的高(h)宽(w),最后是它的类别。

YOLO 的预测是基于整个图片的,并且它会一次性输出所有检测到的目标信息,包括类别和位置。

YOLO的第一步是分割图片,它将图片分割为 S² 个grid,每个grid的大小都是相等的:

YOLOV5入门讲解+常用数据集

YOLO的聪明之处在于,它只要求这个物体的中心落在这个框框之中。

这意味着,我们不用设计非常非常的框,因为我们只需要让物体的中心在这个框中就可以了,而不是必须要让整个物体都在这个框中。

我们要让这个 S² 个框每个都预测出B个bounding box,这个bounding box有5个量,分别是物体的中心位置(x,y)和它的高(h)宽(w),以及这次预测的置信度

每个框框不仅只预测B个bounding box,它还要负责预测这个框框中的物体是什么类别的,这里的类别用one-hot编码表示。

注意,虽然一个框框有多个bounding boxes,但是只能识别出一个物体,因此每个框框需要预测物体的类别,而bounding box不需要

也就是说,如果我们有 S² 个框框,每个框框的bounding boxes个数为B,分类器可以识别出C种不同的物体,那么所有整个ground truth的长度为:

YOLOV5入门讲解+常用数据集

 bounding box显示:

YOLOV5入门讲解+常用数据集

 图片被分成了49个框,每个框预测2个bounding box,因此上面的图中有98个bounding box。

可以看到这些BOX中有的边框比较粗,有的比较细,这是置信度不同的表现,置信度高的比较粗,置信度低的比较细。

在详细的介绍confidence之前,我们先来说一说关于bounding box的细节。

bounding box可以锁定物体的位置,这要求它输出四个关于位置的值,分别是x,y,h和w。我们在处理输入的图片的时候想让图片的大小任意,这一点对于卷积神经网络来说不算太难,但是,如果输出的位置坐标是一个任意的正实数,模型很可能在大小不同的物体上泛化能力有很大的差异。

这时候当然有一个常见的套路,就是对数据进行归一化,让连续数据的值位于0和1之间。

对于x和y而言,这相对比较容易,毕竟x和y是物体的中心位置,既然物体的中心位置在这个grid之中,那么只要让真实的x除以grid的宽度,让真实的y除以grid的高度就可以了。

但是h和w就不能这么做了,因为一个物体很可能远大于grid的大小,预测物体的高和宽很可能大于bounding box的高和宽,这样w除以bounding box的宽度,h除以bounding box的高度依旧不在0和1之间

解决方法是让w除以整张图片的宽度h除以整张图片的高度

下面的例子是一个448*448的图片,有3*3的grid,展示了计算x,y,w,h的真实值(ground truth)的过程:

YOLOV5入门讲解+常用数据集

YOLOV5入门讲解+常用数据集

 confidence的计算公式是:

YOLOV5入门讲解+常用数据集

这个IOU的全称是intersection over union,也就是交并比,它反应了两个框框的相似度。

YOLOV5入门讲解+常用数据集​ 

 存在一个不得不考虑的问题,如果物体很大,而框框又很小,一个物体被多个框框识别了怎么办?

这时用到一个叫做非极大值抑制Non-maximal suppression(NMS)的技术。

这个NMS还是基于交并比实现的。

YOLOV5入门讲解+常用数据集

B1,B2,B3,B4这四个框框可能都说狗狗在我的框里,但是最后的输出应该只有一个框,那怎么把其他框删除呢?

这里就用到了我们之前讲的confidence了,confidence预测有多大的把握这个物体在我的框里,我们在同样是检测狗狗的框里,也就是B1,B2,B3,B4中,选择confidence最大的,把其余的都删掉。

也就是只保留B1。

YOLOV5

YOLOV5目前的四个版本与版本对应的不同的性能如下图:

YOLOV4出现之后不久,YOLOv5横空出世。YOLOv5在YOLOv4算法的基础上做了进一步的改进,检测性能得到进一步的提升。虽然YOLOv5算法并没有与YOLOv4算法进行性能比较与分析,但是YOLOv5在COCO数据集上面的测试效果还是挺不错的。大家对YOLOv5算法的创新性半信半疑,有的人对其持肯定态度,有的人对其持否定态度。在我看来,YOLOv5检测算法中还是存在很多可以学习的地方,虽然这些改进思路看来比较简单或者创新点不足,但是它们确定可以提升检测算法的性能。其实工业界往往更喜欢使用这些方法,而不是利用一个超级复杂的算法来获得较高的检测精度。YOLOV5入门讲解+常用数据集

YOLOv5是一种单阶段目标检测算法,该算法在YOLOv4的基础上添加了一些新的改进思路,使其速度与精度都得到了极大的性能提升。

YOLOV5入门讲解+常用数据集

目标检测(Object Detection)=What,and where

定位Lcalization

位置(最小外界矩形,Bounding box)

识别Recognition    what?

类别标签(Category label)

置信度得分(Confidence score)

 定位和检测:

定位是找到检测图像中带有一个给定标签的单个目标

检测时找到图像中带有给定标签的所有目标

YOLOV5入门讲解+常用数据集

 目标检测数据集

1.PASCAL VOC

2.MS COCO

PASCAL VOC:

PASCAL VOC挑战赛再2005年到2012年间展开。

PASCAL VOC 2007:9963张图片,24640个标注;PASCAL VOC2012:11530张图片,27450个标注,该数据集有20个分类:

Person:person

Animal:bird,cat,cow,dog,horse,sheep

Vehicle:aerop,bicy,boat,bus,car,motorbike,train

Indoor:botle,chair,dining table,potted plant,sofa,tv/monitor

YOLOV5入门讲解+常用数据集

链接:The PASCAL Visual Object Classes Challenge 2012 (VOC2012)

MS COCO

MS COCO的全称时Microsoft Common Objects in Context,起源于是微软于2014出资标注的Microsoft COCO数据集,与ImageNet竞赛一样,被视为是计算机视觉领域最受欢迎和最权威的比赛之一。

在ImageNet竞赛停办后,COCO竞赛就成为是当前目标识别、检测等领域的一个最权威、最重要的标杆,也是目前该领域在国际上唯一能汇集Google、微软、Facebook以及国内外众多顶尖院校的优秀创新企业共同参与的大赛。

COCO - Common Objects in Context

COCO数据集包含20万个图象:11.5万多张训练集图片,5千张验证集图像,2万多张检测集图像

80个类别中有超出50万个目标标注

平均每个图像的目标数为7.2

YOLOV5入门讲解+常用数据集文章来源地址https://www.toymoban.com/news/detail-458618.html

到了这里,关于YOLOV5入门讲解+常用数据集的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • YOLOv5入门实践(3)——手把手教你划分自己的数据集

    上一篇我们学习了如何利用labelimg标注自己的数据集,下一步就是该对这些数据集进行划分了。面对繁杂的数据集,如果手动划分的话不仅麻烦而且不能保证随机性。本篇文章就来手把手教你利用代码,自动将自己的数据集划分为训练集、验证集和测试集。一起来学习吧! 前

    2024年02月03日
    浏览(52)
  • YOLOv5入门实践(4)——手把手教你训练自己的数据集

      在上一篇文章中我们介绍了如何划分数据集,划分好之后我们的前期准备工作就已经全部完成了,下面开始训练自己的数据集吧! 前期回顾: YOLOv5入门实践(1)——手把手带你环境配置搭建 YOLOv5入门实践(2)——手把手教你利用labelimg标注数据集

    2024年04月10日
    浏览(67)
  • 【yolov5 安装教程】(入门篇)避免踩雷保姆级教程 在m1芯片下 使用yolov5本地训练自己的数据集 ——mac m1

    ​​​​​​​ 目录 一、简介 配置 环境准备 二、环境配置 1.安装anaconda 2.安装TensorFlow 3.安装pytorch 4.pyqt5安装  5.安装labelimg 6.下载yolov5 7.pycharm安装 三、使用labelimg标记图片 1.准备工作 2.标记图片 四、 划分数据集以及配置文件修改 1. 划分训练集、验证集、测试集 2.XML格式转

    2024年02月05日
    浏览(53)
  • YOLOV5中损失函数即代码讲解

    YOLOV5中损失函数即代码讲解 YOLOV5中loss.py文件代码讲解:https://blog.csdn.net/weixin_42716570/article/details/116759811 yolov5中一共存在三种损失函数: 分类损失cls_loss:计算锚框与对应的标定分类是否正确 定位损失box_loss:预测框与标定框之间的误差(CIoU) 置信度损失obj_loss:计算网络的

    2024年02月03日
    浏览(48)
  • YOLOv5网络模型的结构原理讲解(全)

    YOLOv5有几种不同的架构,各网络模型算法性能分别如下: YOLOv5是一种目标检测算法,其模型结构主要包括以下组成部分: 输入端:YOLOv5的Head网络由3个不同的输出层组成,分别负责检测大中小尺度的目标。 Backbone网络:YOLOv5使用CSPDarknet53作为其主干网络,其具有较强的特征提

    2024年02月05日
    浏览(32)
  • RK3588平台开发系列讲解(项目篇)YOLOv5部署测试

    平台 内核版本 安卓版本 RK3588 Linux 5.10 Android 12 沉淀、分享、成长,让自己和他人都能有所收获!😄

    2024年02月06日
    浏览(57)
  • 【Yolov5】保姆级别源码讲解之-推理部分detect.py文件

    克隆一下yolov5的代码 配置好项目所需的依赖包 opt 为执行可以传递的参数 具体的参数如图所示,比较重要的参数 weights权重文件、–source 数据集合 – data 数据集的配置 weights 权重文件 – source 为需要推理的原图 data参数 数据配置 imgsz 参数是训练配置图片的大小 device 设备信

    2024年02月08日
    浏览(40)
  • RK3588平台开发系列讲解(项目篇)基于yolov5的物体识别

    平台 内核版本 安卓版本 RK3588 Linux 5.10 Android 12 沉淀、分享、成长,让自己和他人都能有所收获!😄 📢 本篇将给大家介绍,如

    2024年02月06日
    浏览(51)
  • YOLOv5入门

    weights:训练好的模型文件 source: 检测的目标,可以是单张图片、文件夹、屏幕或者摄像头等 conf-thres: 置信度闯值,越低框越多,越高框越少 iou-thres: IOU闻值,越低框越少,越少框越多 安装Jupyter 命令行输入以下代码 激活环境 新建Jupyter文件 hub_detect.ipynb 注意运行环境,在下

    2024年02月14日
    浏览(41)
  • YOLOv5 实例分割入门

    YOLOv5 目标检测模型以其出色的性能和优化的推理速度而闻名。因此, YOLOv5 实例分割 模型已成为实时实例分割中最快、最准确的模型之一。  在这篇文章中,我们将回答以下关于 YOLOv5 实例分割的问题: YOLOv5检测模型做了哪些改动,得到了YOLOv5实例分割架构? 使用的 ProtoN

    2024年02月05日
    浏览(43)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包