三、Java8的CompletableFuture,Java的多线程开发
0、Java线程工作内存介绍
- 如下图:
1、CompletableFuture的常用方法
- 以后用到再加
runAsync() :开启异步(创建线程执行任务),无返回值
supplyAsync() :开启异步(创建线程执行任务),有返回值
thenApply() :然后应用,适用于有返回值的结果,拿着返回值再去处理。
exceptionally():用于处理异步任务执行过程中出现异常的情况的一个方法:返回默认值或者一个替代的 CompletableFuture 对象,从而避免系统的崩溃或异常处理的问题。
handle():类似exceptionally()
get() :阻塞线程:主要可以: ①获取线程中的异常然后处理异常、②设置等待时间
join() :阻塞线程:推荐使用 join() 方法,因为它没有受到 interrupt 的干扰,不需要捕获异常,也不需要强制类型转换。他自己会抛出异常。
CompletableFuture.allOf()
CompletableFuture.anyOf()
-
get() 和 join() 方法区别?
- 都可以阻塞线程 —— 等所有任务都执行完了再执行后续代码。
CompletableFuture 中的 get() 和 join() 方法都用于获取异步任务的执行结果,但是在使用时需要注意以下几点区别:
1. 抛出异常的方式不同:如果异步任务执行过程中出现异常, get() 方法会抛出 ExecutionException 异常,而 join() 方法会抛出 CompletionException 异常,这两个异常都是继承自 RuntimeException 的。
2. 方法调用限制不同: join() 方法是不可以被中断的,一旦调用就必须等待任务执行完成才能返回结果;而 get() 方法可以在调用时设置等待的超时时间,如果超时还没有获取到结果,就会抛出 TimeoutException 异常。
3. 返回结果类型不同: get() 方法返回的是异步任务的执行结果,该结果是泛型类型 T 的,需要强制转换才能获取真正的结果;而 join() 方法返回的是异步任务的执行结果,该结果是泛型类型 T,不需要强制转换。
4. 推荐使用方式不同:推荐在 CompletableFuture 中使用 join() 方法,因为它没有受到 interrupt 的干扰,不需要捕获异常,也不需要强制类型转换。
综上所述, get() 方法和 join() 方法都是获取异步任务的执行结果,但是在使用时需要根据具体场景选择使用哪个方法。如果需要获取执行结果并且不希望被中断,推荐使用 join() 方法;如果需要控制等待时间或者需要捕获异常,则可以使用 get() 方法。
- anyOf() 和 allOf() 的区别?
CompletableFuture 是 Java 8 引入的一个强大的异步编程工具,它支持链式调用、组合和转换异步操作等功能。其中,anyOf 和 allOf 都是 CompletableFuture 的两个常用方法,它们的区别如下:
1. anyOf:任意一个 CompletableFuture 完成,它就会跟随这个 CompletableFuture 的结果完成,返回第一个完成的 CompletableFuture 的结果。
2. allOf:所有的 CompletableFuture 都完成时,它才会跟随它们的结果完成,返回一个空的 CompletableFuture。
简而言之,anyOf 和 allOf 的最大区别是:anyOf 任意一个 CompletableFuture 完成就跟着它的结果完成,而 allOf 所有的 CompletableFuture 完成才可以完成,并返回一个空的 CompletableFuture。
举例来说,如果有三个 CompletableFuture:f1、f2、f3,其中 f1 和 f2 可能会返回一个字符串,而 f3 可能会返回一个整数,那么:
- anyOf(f1, f2, f3) 的结果是 f1、f2、f3 中任意一个 CompletableFuture 的结果;
- allOf(f1, f2, f3) 的结果是一个空的 CompletableFuture,它的完成状态表示 f1、f2、f3 是否全部完成。
总之,anyOf 和 allOf 在实际使用中可以根据不同的需求来选择,它们都是 CompletableFuture 中非常强大的组合操作。
2、使用CompletableFuture
2.1、实体类准备
package com.cc.md.entity;
import lombok.Data;
/**
* @author CC
* @since 2023/5/24 0024
*/
@Data
public class UserCs {
private String name;
private Integer age;
}
2.2、常用方式
- 无返回值推荐:开启多线程——无返回值的——阻塞:test06
@Resource(name = "myIoThreadPool")
private ThreadPoolTaskExecutor myIoThreadPool;
//CompletableFuture开启多线程——无返回值的
@Test
public void test06() throws Exception {
List<CompletableFuture<Void>> futures = new ArrayList<>();
//循环,模仿很多任务
for (int i = 0; i < 1000; i++) {
int finalI = i;
CompletableFuture<Void> future = CompletableFuture.runAsync(() -> {
//第一批创建的线程数
log.info("打印:{}", finalI);
//模仿io流耗时
try {
Thread.sleep(5000);
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
}, myIoThreadPool);
futures.add(future);
}
//阻塞:多线程的任务执行。相当于多线程执行完了,再执行后面的代码
//如果不阻塞,上面的相当于异步执行了。
//阻塞方式1:可以获取返回的异常、设置等待时间
// futures.forEach(future -> {
// try {
// future.get();
// } catch (Exception e) {
// throw new RuntimeException(e);
// }
// });
//阻塞方式2(推荐)
CompletableFuture.allOf(futures.toArray(new CompletableFuture[0])).get();
log.info("打印:都执行完了。。。");
}
-
有返回值推荐:开启多线程——有返回值的,返回一个新的List——阻塞——使用stream流的map:test09
- test07、test08 可以转化为 test09 (现在这个)
- 可以返回任务类型的值,不一定要返回下面的user对象。
@Resource(name = "myIoThreadPool")
private ThreadPoolTaskExecutor myIoThreadPool;
//CompletableFuture开启多线程——有返回值的,返回一个新的List——先有数据的情况——使用stream流的map
//像这种,需要构建另一个数组的,相当于一个线程执行完了,会有返回值
//使用stream流的map + CompletableFuture.supplyAsync()
@Test
public void test09() throws Exception {
//先获取数据,需要处理的任务。
List<UserCs> users = this.getUserCs();
//莫法处理任务
List<CompletableFuture<UserCs>> futures = users.stream()
.map(user -> CompletableFuture.supplyAsync(() -> {
// 处理数据
user.setName(user.getName() + "-改");
log.info("打印-改:{}", user.getName());
// 其他的业务逻辑。。。
return user;
}, myIoThreadPool)).collect(Collectors.toList());
//获取futures
List<UserCs> endList = futures.stream()
//阻塞所有线程
.map(CompletableFuture::join)
//取age大于10的用户
.filter(user -> user.getAge() > 10)
//按照age升序排序
.sorted(Comparator.comparing(UserCs::getAge))
.collect(Collectors.toList());
log.info("打印:都执行完了。。。{}", endList);
}
2.3、异常处理
- exceptionally
- handle
//CompletableFuture 异常处理
@Test
public void test10() throws Exception {
//先获取数据,需要处理的任务。
List<UserCs> users = this.getUserCs();
//莫法处理任务
List<CompletableFuture<UserCs>> futures = users.stream()
.map(user -> CompletableFuture.supplyAsync(() -> {
if (user.getAge() > 5){
int a = 1/0;
}
// 处理数据
user.setName(user.getName() + "-改");
log.info("打印-改:{}", user.getName());
// 其他的业务逻辑。。。
return user;
}, myIoThreadPool)
//处理异常方式1:返回默认值或者一个替代的 Future 对象,从而避免系统的崩溃或异常处理的问题。
.exceptionally(throwable -> {
//可以直接获取user
System.out.println("异常了:" + user);
//处理异常的方法……
//1还可以进行业务处理……比如将异常数据存起来,然后导出……
//2返回默认值,如:user、null
//return user;
//3抛出异常
throw new RuntimeException(throwable.getMessage());
})
//处理异常方式2:类似exceptionally(不推荐)
// .handle((userCs, throwable) -> {
// System.out.println("handle:" + user);
// if (throwable != null) {
// // 处理异常
// log.error("处理用户信息出现异常,用户名为:" + user.getName(), throwable);
// // 返回原始数据
// return userCs;
// } else {
// // 返回正常数据
// return userCs;
// }
// })
)
.collect(Collectors.toList());
//获取futures
List<UserCs> endList = futures.stream()
//阻塞所有线程
.map(CompletableFuture::join)
//取age大于10的用户
.filter(user -> user.getAge() > 10)
//按照age升序排序
.sorted(Comparator.comparing(UserCs::getAge))
.collect(Collectors.toList());
log.info("打印:都执行完了。。。{}", endList);
}
2.4、CompletableFuture的使用测试
1、推荐使用:test03、test05、test09、test10、test11
2、test07、test08就是test09的前身。
-
test01:获取当前电脑(服务器)的cpu核数
-
test02:线程池原始的使用(不推荐直接这样用)
-
test03:开启异步1 —— @Async
-
test04:开启异步2 —— CompletableFuture.runAsync()
-
test05:开启异步2的改造 —— CompletableFuture.runAsync() 和 supplyAsync() —— 阻塞所有异步方法,一起提交
-
相当于开了3个线程去执行三个不同的方法,然后执行完后一起提交。
-
-
test052:开启异步2的改造 —— 第一个任务执行完了,获取到返回值,给后面的执行,可以连写,也可以单写。 —— 阻塞线程:get、join
-
test06:CompletableFuture开启多线程——无返回值的
-
test07:CompletableFuture开启多线程——无返回值的——构建一个新List
-
1、相当于多线程执行任务,然后把结果插入到List中 2、接收多线程的List必须是线程安全的,ArrayList线程不安全 线程安全的List —— CopyOnWriteArrayList 替代 ArrayList
-
-
test08:CompletableFuture开启多线程——无返回值的——构建一个新List——先有数据的情况(基本和test07是一个方法)
-
test09:CompletableFuture开启多线程——有返回值的,返回一个新的List——先有数据的情况——使用stream流的map
-
test10:CompletableFuture 异常处理。相当于是 test09的增强,处理异常
-
test11:CompletableFuture 异常处理:如果出现异常就舍弃任务。文章来源:https://www.toymoban.com/news/detail-458654.html
-
1、想了一下,出现异常后的任务确实没有执行下去了,任务不往下执行,怎么会发现异常呢? 2、发现了异常任务也就完了。而且打印了异常,相当于返回了异常。 3、未发生异常的任务会执行完成。如果发生异常都返回空,最后舍弃空的,就得到任务执行成功的 CompletableFuture
-
↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓所有方式↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓文章来源地址https://www.toymoban.com/news/detail-458654.html
package com.cc.md;
import com.cc.md.entity.UserCs;
import com.cc.md.service.IAsyncService;
import org.junit.jupiter.api.Test;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.scheduling.concurrent.ThreadPoolTaskExecutor;
import javax.annotation.Resource;
import java.util.*;
import java.util.concurrent.CompletableFuture;
import java.util.concurrent.CopyOnWriteArrayList;
import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.TimeUnit;
import java.util.stream.Collectors;
@SpringBootTest
class Test01 {
private static final Logger log = LoggerFactory.getLogger(Test01.class);
@Resource(name = "myIoThreadPool")
private ThreadPoolTaskExecutor myIoThreadPool;
/**
* 异步类
*/
@Resource
private IAsyncService asyncService;
@Test
void test01() {
//获取当前jdk能调用的CPU个数(当前服务器的处理器个数)
int i = Runtime.getRuntime().availableProcessors();
System.out.println(i);
}
//线程池原始的使用
@Test
void test02() {
try {
for (int i = 0; i < 1000; i++) {
int finalI = i;
myIoThreadPool.submit(() -> {
//第一批创建的线程数
log.info("打印:{}", finalI);
//模仿io流耗时
try {
Thread.sleep(5000);
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
});
}
}catch(Exception e){
throw new RuntimeException(e);
}finally {
myIoThreadPool.shutdown();
}
}
//开启异步1 —— @Async
@Test
public void test03() throws Exception {
log.info("打印:{}", "异步测试的-主方法1");
asyncService.async1();
asyncService.async2();
//不会等待异步方法执行,直接返回前端数据
log.info("打印:{}", "异步测试的-主方法2");
}
//开启异步2 —— CompletableFuture.runAsync()
@Test
public void test04() throws Exception {
log.info("打印:{}", "异步测试的-主方法1");
CompletableFuture.runAsync(() -> {
log.info("打印:{}", "异步方法1!");
//异步执行的代码,也可以是方法,该方法不用单独写到其他类中。
this.async2("异步方法1!-end");
}, myIoThreadPool);
//不会等待异步方法执行,直接返回前端数据
log.info("打印:{}", "异步测试的-主方法2");
}
//异步需要执行的方法,可以写在同一个类中。
private void async2(String msg) {
//模仿io流耗时
try {
Thread.sleep(5000);
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
log.info("打印:{}", msg);
}
//开启异步2的改造 —— CompletableFuture.runAsync() 和 supplyAsync() —— 阻塞所有异步方法,一起提交
//相当于开了3个线程去执行三个不同的方法,然后执行完后一起提交。
@Test
public void test05() throws Exception {
log.info("打印:{}", "异步测试的-主方法1");
//异步执行1
CompletableFuture<String> future1 = CompletableFuture.supplyAsync(() -> {
log.info("打印:{}", "异步方法1!");
//异步执行的代码,也可以是方法,该方法不用单独写到其他类中。
this.async2("异步方法1-end");
return "异步方法1";
}, myIoThreadPool);
//异步执行2
CompletableFuture<String> future2 = CompletableFuture.supplyAsync(() -> {
log.info("打印:{}", "异步方法2!");
//异步执行的代码,也可以是方法,该方法不用单独写到其他类中。
this.async2("异步方法2-end");
return "异步方法2";
}, myIoThreadPool);
//异步执行3,不用我们自己的线程池 —— 用的就是系统自带的 ForkJoinPool 线程池
CompletableFuture<Void> future3 = CompletableFuture.runAsync(() -> {
log.info("打印:{}", "异步方法3!");
//异步执行的代码,也可以是方法,该方法不用单独写到其他类中。
this.async2("异步方法3-end");
});
//阻塞所有异步方法,一起提交后才走下面的代码
CompletableFuture.allOf(future1, future2, future3).join();
log.info("打印:{}", "异步-阻塞-测试的-主方法2-end");
}
//开启异步2的改造 —— 第一个任务执行完了,获取到返回值,给后面的执行,可以连写,也可以单写。 —— 阻塞线程:get、join
// CompletableFuture 的 get 和 join 方法区别:
// get:①可以获取线程中的异常、②设置等待时间
// join:推荐在 CompletableFuture 中使用 join() 方法,因为它没有受到 interrupt 的干扰,不需要捕获异常,也不需要强制类型转换。
@Test
public void test052() throws Exception {
log.info("打印:{}", "异步测试的-主方法1");
//异步执行1
CompletableFuture<String> future1 = CompletableFuture.supplyAsync(() -> {
log.info("打印:{}", "异步方法1!");
// 异步执行的代码,也可以是方法,该方法不用单独写到其他类中。
String str = "异步方法1-end";
this.async2(str);
return str;
}, myIoThreadPool);
// 异步执行2 - 无返回值 —— 分开写的方式
CompletableFuture<Void> future2 = future1.thenAccept(str1 -> {
log.info("打印:{}", "异步方法2!");
// 异步执行的代码,也可以是方法,该方法不用单独写到其他类中。
this.async2(String.format("%s-加-异步方法2! - 无返回值 - ",str1));
});
// 异步执行3 - 有返回值 —— 分开写future1,连写future3方式
CompletableFuture<String> future3 = future1.thenApply(str2 -> {
log.info("打印:{}", "异步方法3!");
// 异步执行的代码,也可以是方法,该方法不用单独写到其他类中。
this.async2(String.format("%s-加-异步方法3! - 有返回值 - ", str2));
return "异步执行3 - 有返回值 ";
//连写的方式。
}).thenApply(str3 -> {
String format = String.format("%s- end", str3);
log.error("异步3然后应用 - {}", format);
//返回后面的应用
return format;
});
// 获取future3的返回值:
//如果需要捕获异常、设置等待超时时间,则用get
log.info("future3的返回值(不阻塞):{}", future3.get());
// log.info("future3的返回值(不阻塞-设置等待时间,超时报错:TimeoutException):{}",
// future3.get(2, TimeUnit.SECONDS));
//推荐使用 join方法
// log.info("future3的返回值(阻塞):{}", future3.join());
//阻塞所有异步方法,一起提交后才走下面的代码
CompletableFuture.allOf(future1, future2).join();
log.info("打印:{}", "异步-阻塞-测试的-主方法2-end");
}
//CompletableFuture开启多线程——无返回值的
@Test
public void test06() throws Exception {
List<CompletableFuture<Void>> futures = new ArrayList<>();
//循环,模仿很多任务
for (int i = 0; i < 1000; i++) {
int finalI = i;
CompletableFuture<Void> future = CompletableFuture.runAsync(() -> {
//第一批创建的线程数
log.info("打印:{}", finalI);
//模仿io流耗时
try {
Thread.sleep(5000);
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
}, myIoThreadPool);
futures.add(future);
}
//阻塞:多线程的任务执行。相当于多线程执行完了,再执行后面的代码
//如果不阻塞,上面的相当于异步执行了。
//阻塞方式1:可以获取返回的异常、设置等待时间
// futures.forEach(future -> {
// try {
// future.get();
// } catch (Exception e) {
// throw new RuntimeException(e);
// }
// });
//阻塞方式2(推荐)
CompletableFuture.allOf(futures.toArray(new CompletableFuture[0])).get();
log.info("打印:都执行完了。。。");
}
//CompletableFuture开启多线程——无返回值的——构建一个新List
//相当于多线程执行任务,然后把结果插入到List中
//接收多线程的List必须是线程安全的,ArrayList线程不安全
//线程安全的List —— CopyOnWriteArrayList 替代 ArrayList
@Test
public void test07() throws Exception {
List<CompletableFuture<Void>> futures = new ArrayList<>();
//存数据的List
List<UserCs> addList = new CopyOnWriteArrayList<>();
//循环,模仿很多任务
for (int i = 0; i < 1000; i++) {
int finalI = i;
CompletableFuture<Void> future = CompletableFuture.runAsync(() -> {
log.info("打印:{}", finalI);
UserCs userCs = new UserCs();
userCs.setName(String.format("姓名-%s", finalI));
userCs.setAge(finalI);
addList.add(userCs);
}, myIoThreadPool);
futures.add(future);
}
//阻塞
CompletableFuture.allOf(futures.toArray(new CompletableFuture[0])).get();
//返回新的List:endList,取age大于10的用户
List<UserCs> endList = addList.stream()
.filter(user -> user.getAge() > 10)
//按照age升序排序
.sorted(Comparator.comparing(UserCs::getAge))
.collect(Collectors.toList());
log.info("打印:都执行完了。。。{}", endList);
}
//CompletableFuture开启多线程——无返回值的——构建一个新List——先有数据的情况
//用CopyOnWriteArrayList 替代 ArrayList接收
@Test
public void test08() throws Exception {
//先获取数据,需要处理的任务。
List<UserCs> users = this.getUserCs();
//开启多线程
List<CompletableFuture<Void>> futures = new ArrayList<>();
//存数据的List
List<UserCs> addList = new CopyOnWriteArrayList<>();
//莫法处理任务
users.forEach(user -> {
CompletableFuture<Void> future = CompletableFuture.runAsync(() -> {
//添加数据
user.setName(user.getName() + "-改");
addList.add(user);
log.info("打印-改:{}", user.getName());
//其他的业务逻辑。。。
}, myIoThreadPool);
futures.add(future);
});
//阻塞
CompletableFuture.allOf(futures.toArray(new CompletableFuture[0])).get();
//返回新的List:endList
List<UserCs> endList = addList.stream()
.filter(user -> user.getAge() > 10)
//按照age升序排序
.sorted(Comparator.comparing(UserCs::getAge))
.collect(Collectors.toList());
log.info("打印:都执行完了。。。{}", endList);
}
//CompletableFuture开启多线程——有返回值的,返回一个新的List——先有数据的情况——使用stream流的map
//像这种,需要构建另一个数组的,相当于一个线程执行完了,会有返回值
//使用stream流的map + CompletableFuture.supplyAsync()
@Test
public void test09() throws Exception {
//先获取数据,需要处理的任务。
List<UserCs> users = this.getUserCs();
//莫法处理任务
List<CompletableFuture<UserCs>> futures = users.stream()
.map(user -> CompletableFuture.supplyAsync(() -> {
// 处理数据
user.setName(user.getName() + "-改");
log.info("打印-改:{}", user.getName());
// 其他的业务逻辑。。。
return user;
}, myIoThreadPool)).collect(Collectors.toList());
//获取futures
List<UserCs> endList = futures.stream()
//阻塞所有线程
.map(CompletableFuture::join)
//取age大于10的用户
.filter(user -> user.getAge() > 10)
//按照age升序排序
.sorted(Comparator.comparing(UserCs::getAge))
.collect(Collectors.toList());
log.info("打印:都执行完了。。。{}", endList);
}
//基础数据
private List<UserCs> getUserCs() {
List<UserCs> users = new ArrayList<>();
for (int i = 0; i < 1000; i++) {
UserCs userCs = new UserCs();
userCs.setName(String.format("姓名-%s", i));
userCs.setAge(i);
users.add(userCs);
}
return users;
}
//CompletableFuture 异常处理
@Test
public void test10() throws Exception {
//先获取数据,需要处理的任务。
List<UserCs> users = this.getUserCs();
//莫法处理任务
List<CompletableFuture<UserCs>> futures = users.stream()
.map(user -> CompletableFuture.supplyAsync(() -> {
if (user.getAge() > 5){
int a = 1/0;
}
// 处理数据
user.setName(user.getName() + "-改");
log.info("打印-改:{}", user.getName());
// 其他的业务逻辑。。。
return user;
}, myIoThreadPool)
//处理异常方式1:返回默认值或者一个替代的 Future 对象,从而避免系统的崩溃或异常处理的问题。
.exceptionally(throwable -> {
//可以直接获取user
System.out.println("异常了:" + user);
//处理异常的方法……
//1还可以进行业务处理……比如将异常数据存起来,然后导出……
//2返回默认值,如:user、null
//return user;
//3抛出异常
throw new RuntimeException(throwable.getMessage());
})
//处理异常方式2:类似exceptionally(不推荐)
// .handle((userCs, throwable) -> {
// System.out.println("handle:" + user);
// if (throwable != null) {
// // 处理异常
// log.error("处理用户信息出现异常,用户名为:" + user.getName(), throwable);
// // 返回原始数据
// return userCs;
// } else {
// // 返回正常数据
// return userCs;
// }
// })
)
.collect(Collectors.toList());
//获取futures
List<UserCs> endList = futures.stream()
//阻塞所有线程
.map(CompletableFuture::join)
//取age大于10的用户
.filter(user -> user.getAge() > 10)
//按照age升序排序
.sorted(Comparator.comparing(UserCs::getAge))
.collect(Collectors.toList());
log.info("打印:都执行完了。。。{}", endList);
}
//CompletableFuture 异常处理:如果出现异常就舍弃任务。
// 想了一下,出现异常后的任务确实没有执行下去了,任务不往下执行,怎么会发现异常呢?
// 发现了异常任务也就完了。而且打印了异常,相当于返回了异常。
// 未发生异常的任务会执行完成。如果发生异常都返回空,最后舍弃空的,就得到任务执行成功的 CompletableFuture
@Test
public void test11() {
List<UserCs> users = getUserCs();
List<CompletableFuture<UserCs>> futures = users.stream()
.map(user -> CompletableFuture.supplyAsync(() -> {
if (user.getAge() > 15) {
int a = 1 / 0;
}
user.setName(user.getName() + "-改");
log.info("打印-改:{}", user.getName());
return user;
}, myIoThreadPool)
//处理异常
.exceptionally(throwable -> {
//其他处理异常的逻辑
return null;
})
)
//舍弃返回的对象是null的 CompletableFuture
.filter(e -> Objects.nonNull(e.join())).collect(Collectors.toList());
//获取futures
List<UserCs> endList = futures.stream()
//阻塞所有线程
.map(CompletableFuture::join)
//取age大于10的用户
.filter(user -> user.getAge() > 10)
//按照age升序排序
.sorted(Comparator.comparing(UserCs::getAge))
.collect(Collectors.toList());
log.info("打印:都执行完了。。。{}", endList);
}
}
到了这里,关于Java的CompletableFuture,Java的多线程开发的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!