微软新工具准确率达80%?程序员:我谢谢您

这篇具有很好参考价值的文章主要介绍了微软新工具准确率达80%?程序员:我谢谢您。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

微软宣布推出一种可以提高大型语言模型性能的新工具 Jigsaw。“大型的预训练语言模型(如 GPT-3、Codex 等),可以被调整为从程序员意图的自然语言规范中生成代码。这种自动化模型有可能提高世界上每个程序员的生产力;但是,由于这些模型可能难以理解程序语义,因此所生成的代码的质量不能得到保证。”

根据介绍,Jigsaw 部署了理解程序语法和语义的后处理技术,然后利用用户反馈来提高未来的性能;该工具旨在使用多模式输入为 Python Pandas API 合成代码。

Pandas 是数据科学中广泛使用的 API,具有数百个用于 manipulating dataframes 或具有行和列的表的函数。微软方面称,其经验表明,随着这些大型语言模型演变为根据意图合成代码,Jigsaw 可以在提高系统准确性方面发挥重要作用。

微软新工具准确率达80%?程序员:我谢谢您

像 OpenAI 的 Codex 这样的大型语言模型正在重新定义编程领域。软件开发人员在解决编程任务时,可以为预期的代码片段提供英文描述,Codex 可以用 Python 或 JavaScript 等语言合成预期的代码。但合成的代码可能不正确,甚至可能无法编译或运行。Codex 用户有责任在使用代码之前对其进行审查。Jigsaw 团队解释称,通过 Project Jigsaw,其目标是使部分审查自动化,以提高使用 Codex 等大型语言模型进行代码合成的开发人员的生产力。

微软认为 Jigsaw 可以“完全自动化”检查代码是否编译、处理错误信息以及测试代码是否产生开发人员希望输出的内容的整个过程。“Jigsaw 将预期代码的英文描述以及 I/O 实例作为输入。通过这种方式,它将输入与相关的输出配对;并提供质量保证,即输出的 Python 代码将在提供的输入上编译并产生预期的输出。”

在其 ICSE 2022 论文 Jigsaw:Large Language Models meet Program Synthesis 中,微软方面在 Python Pandas 上评估了这种方法。使用 Jigsaw,用户可以提供对预期转换的英文描述、input dataframe 和相应的 output dataframe,然后让 Jigsaw 合成预期代码。

Jigsaw 获取英语查询并使用适当的上下文对其进行预处理,以构建可以馈送到大型语言模型的输入。微软在实验中发现,Jigsaw 可以在 30% 的时间内创建正确的输出。如果代码失败,那么修复过程在后处理阶段开始。

在后处理过程中,Jigsaw 应用了三种变换来修复代码。这些转变中的每一个都是由他们在 GPT-3 和 Codex 中观察到的故障模式所激发的。而 GPT-3 和 Codex 失败的方式都类似,因此 Jigsaw 解决这些失败模式的后处理对两者都很有用。

微软在各种数据集上评估了 Codex 和 Jigsaw (with Codex),并测量了准确率。Codex 给出了约 30% 的开箱即用的准确性,Jigsaw 则将准确率提高到 60% 以上;通过用户反馈,准确率可提高到 80% 以上。接下来,他们将继续致力于完善 Jigsaw,努力将在 Python Pandas API 上的经验推广到其他 API 和其他语言上;在通过自动化提高程序员生产力方面发挥重要作用。

更多详情可查看官方博客:Jigsaw fixes bugs in machine-written software - Microsoft Research

 文章来源地址https://www.toymoban.com/news/detail-459030.html

到了这里,关于微软新工具准确率达80%?程序员:我谢谢您的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 语义分割准确率计算

    目录 pytorch版 pytorch准确率,miou: sklearn版

    2024年02月06日
    浏览(57)
  • 深度学习提高模型准确率方法

    我们已经收集好了一个数据集,建立了一个神经网络,并训练了模型,在测试和验证阶段最后得到的准确率不高不到90%。或者没有达到业务的期望(需要100%)。 下面列举一些提高模型性能指标的策略或技巧,来提高模型的准确率。 使用更多数据 最简单的方法就是增加数据集

    2024年02月03日
    浏览(55)
  • 语音识别的挑战:如何提高准确率

    语音识别,也被称为语音转文本(Speech-to-Text),是一种将语音信号转换为文本信息的技术。随着人工智能和大数据技术的发展,语音识别技术在各个领域得到了广泛应用,如智能家居、智能汽车、语音助手、语音搜索等。然而,语音识别技术仍然面临着许多挑战,其中最大

    2024年02月02日
    浏览(46)
  • 自然语言处理学习笔记(八)———— 准确率

    目录 1.准确率定义 2.混淆矩阵与TP/FN/FP/TN 3. 精确率 4.召回率 5.F1值 6.中文分词的P、R、F1计算 7.实现 1.准确率定义         准确率是用来衡量一个系统的准确程度的值,可以理解为一系列评测指标。当预测与答案的数量相等时,准确率指的是系统做出正确判断的次数除以总

    2024年02月09日
    浏览(44)
  • 识别准确率竟如此高,实时语音识别服务

    本文将介绍一个准确率非常高的语音识别框架,那就是FunASR,这个框架的模型训练数据超过几万个小时,经过测试,准确率非常高。本文将介绍如何启动WebSocket服务和Android调用这个服务来实时识别,一边说话一边出结果。 安装Pytorch。 使用conda安装ffmpeg等一些库。 安装其他依

    2024年02月07日
    浏览(43)
  • 深度学习准确率提升之天花板分析

    OCR文字识别流水线主要分为三个模块:文字检测-字符分割-字符识别 训练完成后整个系统的准确率是72%,需要进一步提升准确率就需要单独分析每个模块的提升空间。 1)对于文件检测模块,把训练集的图像人工确保标注准确的文本位置来作为输入,系统准确率提升到89% 2)对

    2024年02月12日
    浏览(55)
  • Resnet18训练CIFAR10 准确率95%

    准确率 95.31% 几个关键点: 1、改模型:原始的resnet18首层使用的7x7的卷积核,CIFAR10图片太小不适合,要改成3x3的,步长和padding都要一并改成1。因为图太小,最大池化层也同样没用,删掉。最后一个全连接层输出改成10。 2、图片增强不要太多,只要训练集和验证集结果没有出

    2024年02月02日
    浏览(39)
  • 目前各类型准确率最高的图像识别算法

    1、目标检测 :截至2021年,最准确的目标检测算法是YOLOv4,它在COCO数据集上的mAP(平均平均精度)得分为43.5%。 2、图像分类 :截至2021年,最准确的图像分类算法是EfficientNet-L2,它在ImageNet数据集上的top-1精度最高,达到90.4%。 3、语义分割 :截至2021年,最准确的语义分割算法是u

    2024年02月13日
    浏览(40)
  • 分类模型评估:混淆矩阵、准确率、召回率、ROC

    在二分类问题中,混淆矩阵被用来度量模型的准确率。因为在二分类问题中单一样本的预测结果只有Yes or No,即:真或者假两种结果,所以全体样本经二分类模型处理后,处理结果不外乎四种情况,每种情况都有一个专门称谓,如果用一个2行2列表格描述,得到的就是“混淆

    2024年02月06日
    浏览(60)
  • 集成学习与模型融合:如何提高语音识别准确率

    语音识别技术是人工智能领域的一个重要研究方向,它涉及到自然语言处理、信号处理、机器学习等多个领域的知识。随着大数据时代的到来,语音识别技术的发展也受益于大量的数据和高性能计算资源的支持。然而,面对复杂多样的语音数据,传统的单模型方法已经不能满

    2024年02月20日
    浏览(63)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包