【2023 年第十三届 MathorCup 高校数学建模挑战赛】 B 题 城市轨道交通列车时刻表优化问题 42页论文及代码

这篇具有很好参考价值的文章主要介绍了【2023 年第十三届 MathorCup 高校数学建模挑战赛】 B 题 城市轨道交通列车时刻表优化问题 42页论文及代码。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

相关信息

(1)建模思路

【2023 年第十三届 MathorCup 高校数学建模挑战赛】A 题 量子计算机在信用评分卡组合优化中的应用 详细建模过程解析及代码实现

【2023 年第十三届 MathorCup 高校数学建模挑战赛】 B 题 城市轨道交通列车时刻表优化问题 详细建模方案及代码实现

【2023 年第十三届 MathorCup 高校数学建模挑战赛】C 题 电商物流网络包裹应急调运与结构优化问题 建模方案及代码实现

(2)完整论文

【2023 年第十三届 MathorCup 高校数学建模挑战赛】A 题 量子计算机在信用评分卡组合优化中的应用 42页论文及代码

【2023 年第十三届 MathorCup 高校数学建模挑战赛】 B 题 城市轨道交通列车时刻表优化问题 42页论文及代码

【2023 年第十三届 MathorCup 高校数学建模挑战赛】C 题 电商物流网络包裹应急调运与结构优化问题 赛后总结之31页论文及代码

[【2023 年第十三届 MathorCup 高校数学建模挑战赛】D 题 航空安全风险分析和飞行技术评估问题 27页论文及代码](
【2023 年第十三届 MathorCup 高校数学建模挑战赛】 B 题 城市轨道交通列车时刻表优化问题 42页论文及代码

【2023 年第十三届 MathorCup 高校数学建模挑战赛】 B 题 城市轨道交通列车时刻表优化问题 42页论文及代码

相关链接

【2023 年第十三届 MathorCup 高校数学建模挑战赛】 B 题 城市轨道交通列车时刻表优化问题 详细建模方案及代码实现

1 题目

列车时刻表优化问题是轨道交通领域行车组织方式的经典问题之一。 列车时刻表规定了列车在每个车站的到达和出发(或通过)时刻,其在实 际运用过程中,通常用列车运行图来表示。图 1 为某一运行图的示例,图中每一条线表示一趟列车,横轴表示车站,纵轴表示时间,每一条线反映 了一趟列车在不同时刻所处的相对位置,也称为运行线。比如,图中红色 运行线表示,列车于 9:02 分从 D 站出发,于 9:05 分到达 C 站,停留 1 分钟后出发,于 9:09 分到达 B 站,停留 1 分钟后出发,于 10:03 分到达A 站。

【2023 年第十三届 MathorCup 高校数学建模挑战赛】 B 题 城市轨道交通列车时刻表优化问题 42页论文及代码

图 1: 列车运行图示意图

实际运营中,在铺画列车运行图之前,首先得先确定列车开行方案, 列车开行方案包括列车编组方案、列车停站方案和列车交路计划三部分。列车编组方案规定了列车的车型和编组数量(即列车的节数),在本问题中采用统一的车型和编组数量。列车停站方案是规定列车在哪些站点停站的方案,在本问题中均采用 站站停的停站方案(即列车在每个经过的车站都会停车)。列车交路计划是指列车在规定的运行线路上往返运行的方式,即规定 了列车在哪些站点之间运行以及开行的数量。大小交路模式是城轨运营中 常用的交路模式,是指城市轨道交通运行线路的长短区间。通俗讲,大交 路是指列车跑完全程,小交路是指将全程中的某两个站作为临时起点或终 点来跑,需要注意的是,只有具有折返能力的车站(能让列车调头的车站) 才能作为交路的起点或终点。图 2 为某大小交路方案示意图,表示以 A 站为起点的,D 站为终点大交路区间开行 10 对列车,以 A 站为起点,C 站为终点小交路区间开行 5 对列车。

在大小交路方案中,大小交路列车开行列数通常为1:n 或n:1 两种模式, 即每开行 n 列大(小)交路列车后,开行一列小(大)交路列车,并且小交路所经过的车站数量需有一定限制:小交路区间过短会导致列车的折返频繁,使运营成本增加;小交路区间过长则无法体现大小交路运营模式的作用。
【2023 年第十三届 MathorCup 高校数学建模挑战赛】 B 题 城市轨道交通列车时刻表优化问题 42页论文及代码

图 2: 大小交路示意图

在大小交路的运营模式下,乘客通常会被分为 6 种类型,如图 3 所示, 其中s1 − sn为大交路区间,𝑠𝑎 − 𝑠𝑏为小交路区间。
第Ⅰ,Ⅱ,Ⅲ类乘客起点均位于[s1, sa],终点无论位于哪个区间,乘客都只能乘坐大交路列车。第Ⅳ,Ⅴ类乘客起点均位于[𝑠𝑎, 𝑠𝑏]。其中第Ⅳ类乘客终点位于[𝑠𝑎, 𝑠𝑏], 乘客既可乘坐大交路列车,也可乘坐小交路列车;第Ⅴ类乘客终点位于[𝑠𝑏,𝑠𝑛],乘客可以乘坐小交路列车之后到𝑠𝑏进行换乘,也可直接乘坐大交路列车。第Ⅵ类乘客起点位于[𝑠𝑏, 𝑠𝑛],终点位于[𝑠𝑏, 𝑠𝑛],乘客只能乘坐大交路列车。

【2023 年第十三届 MathorCup 高校数学建模挑战赛】 B 题 城市轨道交通列车时刻表优化问题 42页论文及代码

图 3 :乘客类型分类示意图

在列车开行方案的制定中,需要以最小的企业运营成本和最大的服务 水平(乘客在车时间和乘客等待时间)来满足客流的需求,企业的运营成本包 括固定成本(所需车辆的数量)和变动成本(列车总走行公里)两部分组 成。受到车站通过能力的制约和服务水平的要求,在一定时间内,列车的 发车数量也有一定的限制。在制定好列车开行方案后,可根据该方案同样以企业运营成本最小化 和服务水平最大化为目标铺画列车运行图,即确定每趟列车的出发和到达的具体时刻。现有的列车时刻表通常为等间隔的平行运行图,即发车间隔(如每 5 分钟开行一趟列车)和在同一站点的停站时间相等。发车间隔的长短会有一定的限制:发车间隔过短,则会影响列车运行的安全;发车间 隔过长,则会增长乘客的平均等待时间,从而影响服务水平。同样地,停 站时间也需受到一定限制,一般来说列车在车站的停站时间正比于在该站 上、下车的乘客数量。另外,需要注意的是,两列车在同一区间追踪运行 时,需保留一定的安全间隔(追踪间隔时间)。
采用大小交路运营模式的列车运行图,大交路列车和小交路列车一般 会交替开行,比如当大交路列车与小交路列车的比例为 2:1 时,则会以每3 列车为一个组合(前 2 列车为大交路列车,第三列车为小交路列车)滚动发车。
在下列问题中,只需制定单向的列车时刻表即可。

问题一:在满足客流需求的条件下,以企业运营成本最小化和服务水平最大化为目标,制定列车开行方案。即确定大交路区间列车的开行数量, 小交路的运行区间以及开行数量。(输出格式详见附件 6)
问题二:在问题一制定的列车开行方案下,同样以企业运营成本最小化和服务水平最大化且尽量满足客流需求为目标,制定等间隔的平行运行 图。(输出格式详见附件 7,并将附件 7 单独上传到竞赛系统中)
问题三:对于降低企业运营成本和提高服务水平,你们团队有哪些好的方法或建议?基于客流和车站数据,提供相应的量化分析支持。

名词解释:
乘客在车时间:即乘客从上车到下车所经过的时间,包括列车区间运行时间和停站时间两部分组成。
乘客等待时间:即为乘客在站台候车的等待时间。
断面客流:在单位时间内,沿同一方向通过线路某断面的乘客数量。
如何根据断面客流计算各个断面所需的列车数量:开行数量= ⌈断面客流数/列车定员⌉(向上取整)。
OD 客流:在单位时间内,起始站点到终止站点的乘客人数。
关于等间隔的补充解释:当采用大小交路运营模式时,等间隔为在大交路与小交路重合的区间的发车间隔相等。

输入输出数据:

所给数据为某实际轨道交通线路的真实数据,沿途共有 30 座车站,客流数据的时段为 7:00 - 8:00。数据详见附件。
附件 1:车站数据.xlsx
附件 2:区间运行时间.xlsx 附件 3:OD 客流数据.xlsx 附件 4:断面客流数据.xlsx 附件 5:其他数据.xlsx
附件 6:问题一输出示例.xlsx
附件 7:问题二输出示例.xlsx

2 论文介绍

基于启发式二分搜索的城市轨道交通列车时刻表优化研究摘要

城市轨道交通是大城市公共交通的重要组成部分,随着城市规模的不断扩大和人口的增加,轨道交通的客流量也在不断增加。因此,如何优化城市轨道交通列车时刻表,提高列车的运营效率和客运能力,已成为一个亟待解决的问题。

针对问题一,本文先通过查阅文献和关键指标转化将问题简化,主要采用**C++**代码实现,首先运用贪心算法达到企业运营成本最小化。后两次运用二分搜索法,第一次枚举小交路列车数量确定其数量区间,第二次枚举小交路列车运行长度,确定其运行列数。最后建立多约束受限,多主体协同下两个目标函数的多目标规划模型,数值计算优化调度列车开行方案。

针对问题二,基于模型一所建立模型由层次分析法得到各个站点的权值,来确定乘客人数高谷站点,及时满足乘客的需求使服务水平最大化。依据列车交替开行的运营模式,考虑时间安全间隔,得到列车发行的时刻表,制定等间隔的平行运行图。

针对问题三,要改变列车类型及编组数量,增加列车定员,提升列车最大载客量,从而减少列车数量,降低乘客候车时间,实现企业运营成本最小化和服务水平最大化目标,使得模型再次优化。

最后,对模型进行了优缺点分析,对模型进行改进策略并进行推广。

关键词:列车时刻优化表;贪心算法 ;二分搜索法 ;check 判断函数;多目标规划 ; 层次分析法

【2023 年第十三届 MathorCup 高校数学建模挑战赛】 B 题 城市轨道交通列车时刻表优化问题 42页论文及代码
【2023 年第十三届 MathorCup 高校数学建模挑战赛】 B 题 城市轨道交通列车时刻表优化问题 42页论文及代码

3 获取方式

【2023 年第十三届 MathorCup 高校数学建模挑战赛】 B 题 城市轨道交通列车时刻表优化问题 42页论文及代码文章来源地址https://www.toymoban.com/news/detail-459257.html

到了这里,关于【2023 年第十三届 MathorCup 高校数学建模挑战赛】 B 题 城市轨道交通列车时刻表优化问题 42页论文及代码的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 2023第十三届MathorCup高校数学建模挑战赛C题解析

    C 题 电商物流网络包裹应急调运与结构优化问题 电商物流网络由物流场地(接货仓、分拣中心、营业部等)和物流场地之间的运输线路组成,如图 1 所示。受节假日和“双十一”、“618”等促销活动的影响,电商用户的下单量会发生显著波动,而疫情、地震等突发事件导致物

    2023年04月22日
    浏览(66)
  • 2023 年第三届长三角高校数学建模竞赛赛题浅析

    为了更好地让大家本次长三角比赛选题,我将对本次比赛的题目进行简要浅析。数模模型通常分为优化、预测、评价三类,而本次数学题目就正好对应着A、B、C分别为优化、预测、评价。整体难度不大,主要难点在于A题的优化以及B、C的数据收集。稍后,我将为大家收集一些

    2024年02月05日
    浏览(46)
  • 2023年第四届MathorCup高校数学建模挑战赛——大数据竞赛B题解题思路

    比赛时长为期7天的妈杯大数据挑战赛如期开赛,为了帮助对B题有更深的理解,这里为大家带来B题的初步解题思路。 赛道B:电商零售商家需求预测及库存优化问题 由于妈杯竞赛分为初赛复赛,因此,对于B题大家仅仅看到了预测相关的问题,没有优化相关的问题。包括题干中

    2024年02月06日
    浏览(49)
  • 2023 年第三届长三角高校数学建模 C 题 考研难度知多少

    2023 年第三届长三角高校数学建模竞赛题目 (请先阅读 “ 长三角高校数学建模竞赛论文格式规范 ” ) C 题 考研难度知多少 据相关媒体报道, 2023 年考研可以称得上是 “ 最难 ” 的一年,全国研究生报 考人数突破新高达到 474 万人、部分考研学生感染新冠带病赴考、保研名

    2024年02月05日
    浏览(47)
  • 2023年第三届长三角高校数学建模竞赛】A 题 快递包裹装箱优化问题 详细数学建模过程

    【2023年第三届长三角高校数学建模竞赛】A 题 快递包裹装箱优化问题 20页完整论文及代码 2022 年,中国一年的包裹已经超过 1000 亿件,占据了全球快递事务量的一半以上。近几年,中国每年新增包裹数量相当于美国整个国家一年的包裹数量, 十年前中国还是物流成本最昂贵

    2024年02月06日
    浏览(68)
  • 【2023 年第三届长三角高校数学建模竞赛】C 题 考研难度知多少 考研情况相关数据下载

    C 题 考研难度知多少 据相关媒体报道,2023 年考研可以称得上是“最难”的一年,全国研究生报考人数突破新高达到 474 万人、部分考研学生感染新冠带病赴考、保研名额增多 挤压考研录取名额等因素都导致了 2023 年考研上岸难度加大。不少同学参加完 2023 年考研直呼:今年

    2024年02月06日
    浏览(62)
  • 【2023年第三届长三角高校数学建模竞赛】A 题 快递包裹装箱优化问题 20页完整论文及代码

    【2023年第三届长三角高校数学建模竞赛】A 题 快递包裹装箱优化问题 详细数学建模过程 2022 年,中国一年的包裹已经超过 1000 亿件,占据了全球快递事务量的一半以上。近几年,中国每年新增包裹数量相当于美国整个国家一年的包裹数量, 十年前中国还是物流成本最昂贵的

    2024年02月08日
    浏览(46)
  • 2023 年第十三届“MathorCup” C 题 包裹应急调运问题(解题思路)

    题目背景 电商物流网络由物流场地(接货仓、分拣中心、营业部等)和物流场地之间的运输线路组成。如果物流场地由于紧急情况而暂时或永久关闭,则由其处理的包裹将紧急转移至其他物流场地。这些因素将影响每条线路运输的包裹数量和每个物流场地处理的包裹数量。如

    2024年02月06日
    浏览(61)
  • 【2023 年第三届长三角高校数学建模竞赛】B 题 长三角新能源汽车发展与双碳关系研究 18页论文、数据和代码

    《节能与新能源汽车技术路线图 2.0》提出至 2035 年,新能源汽车市场占比超过 50%,燃料电池汽车保有量达到 100 万辆,节能汽车全面实现混合动力化, 汽车产业实现电动化转型的明确目标。这与国务院办公厅印发的《新能源汽车产业发展规划(2021—2035 年)》的目标是一致的。

    2024年02月17日
    浏览(47)
  • 第三届2022MathorCup高校数学建模挑战赛大数据论文加代码(附详解)

       摘要         本题主要是一个研究预测模型,以中国移动通信集团北京公司为背景,让客户根据 自身在网络覆盖与信号强度方面的体验和语音通话过程中的整体体验来进行语音通话 整体满意度的打分,统计出客户语音业务体验中的影响因素,从而提升客户语音业务满 意

    2024年02月03日
    浏览(63)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包