投影矩阵推导【线性代数】

这篇具有很好参考价值的文章主要介绍了投影矩阵推导【线性代数】。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1)两个向量间的投影

如果两个向量垂直,那么满足。但如果两个向量不垂直,我们就将 b 投影到 a 上,就得到了二者的距离,我们也称为向量 b 到直线 a 的误差。这样就有出现了垂直:

               (1)

投影矩阵推导【线性代数】

投影向量 p 在直线上,不妨假设  ,那么误差 。带入式(1)中得到:

投影矩阵:

 

投影矩阵有两个基本性质。

性质一: (投影矩阵为对称矩阵);

性质二: (两次投影结果相同),具体证明直接代公式。

2)向量与平面的投影

如下图所示,有向量 b ,和由向量 a1、a2 线性组合成的列空间(平面)。将向量 b 投影到平面上得到:,下面求解投影矩阵 。

投影矩阵推导【线性代数】

求解步骤和上面一样,只是由直线变为了平面空间,以前假设  ,现在假设:

同理:

又向量 e 垂直于平面,所以:

因为可逆且对称(证明在附录2),所以:

同样的有、

其实,投影就是将向量分解为两部分,一部分(p)投影到矩阵A的列空间中,另一部分(e)投影到了左零空间。

参考:《Liear Algebra And Its Application》Gilbert Strang文章来源地址https://www.toymoban.com/news/detail-459346.html

附录一:

附录二 :

到了这里,关于投影矩阵推导【线性代数】的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • 线性代数|推导:线性变换与在基下的矩阵一一对应

    前置定义 1 设 T T T 是线性空间 V n V_n V n ​ 中的线性变换,在 V n V_n V n ​ 中取定一个基 α 1 , α 2 , ⋯   , α n boldsymbol{alpha}_1,boldsymbol{alpha}_2,cdots,boldsymbol{alpha}_n α 1 ​ , α 2 ​ , ⋯ , α n ​ ,如果这个基在变换 T T T 下的像(用这个基线性表示)为 { T ( α 1 ) = a 11 α 1 +

    2024年02月04日
    浏览(13)
  • 线性代数本质系列(一)向量,线性组合,线性相关,矩阵

    线性代数本质系列(一)向量,线性组合,线性相关,矩阵

    本系列文章将从下面不同角度解析线性代数的本质,本文是本系列第一篇 向量究竟是什么? 向量的线性组合,基与线性相关 矩阵与线性相关 矩阵乘法与线性变换 三维空间中的线性变换 行列式 逆矩阵,列空间,秩与零空间 克莱姆法则 非方阵 点积与对偶性 叉积 以线性变换

    2024年02月04日
    浏览(13)
  • 线性代数 --- 矩阵与向量的乘法

    线性代数 --- 矩阵与向量的乘法

    矩阵x向量(注:可以把列向量看成是nx1的矩阵)         现有如下方程组:  9个系数,3个未知数,等式右边有3个数         上述方程组可用矩阵的方式改写成,一个系数矩阵A与一个未知数向量x的乘积,乘积的结果等于右端向量b: 现在我们分别用两种方法,行乘和

    2024年02月05日
    浏览(7)
  • 线性代数|证明:线性变换在两个基下的矩阵相似

    前置定义 1(基变换公式、过渡矩阵) 设 α 1 , ⋯   , α n boldsymbol{alpha}_1,cdots,boldsymbol{alpha}_n α 1 ​ , ⋯ , α n ​ 及 β 1 , ⋯   , β n boldsymbol{beta}_1,cdots,boldsymbol{beta}_n β 1 ​ , ⋯ , β n ​ 是线性空间 V n V_n V n ​ 中的两个基, { β 1 = p 11 α 1 + p 21 α 2 + ⋯ + p n 1 α n β 2

    2024年02月03日
    浏览(15)
  • 【JS 线性代数算法之向量与矩阵】

    线性代数是数学的一个分支,用于研究线性方程组及其解的性质、向量空间及其变换的性质等。在计算机科学领域中,线性代数常用于图形学、机器学习、计算机视觉等领域。本文将详细介绍 JS 中常用的线性代数算法,并提供代码示例。 向量是有大小和方向的量,通常用一

    2024年02月13日
    浏览(5)
  • 线性代数矩阵乘法中的行向量和列向量

    线性代数矩阵乘法中的行向量和列向量

    在矩阵中有两个概念,行向量与列向量,这是从两个不同的角度看待矩阵的组成。这篇文章将从 行向量 和 列向量 两个角度来分解 矩阵的乘法 。 假设有两个矩阵 A 和 B 一般矩阵的乘法分解 简单的理解就是A矩阵的第一行与B矩阵的第一列逐元素相乘,就是 结果矩阵 的左上角

    2024年02月11日
    浏览(12)
  • 线性代数|证明:矩阵不同特征值对应的特征向量线性无关

    定理 1 设 λ 1 , λ 2 , ⋯   , λ m lambda_1,lambda_2,cdots,lambda_m λ 1 ​ , λ 2 ​ , ⋯ , λ m ​ 是方阵 A boldsymbol{A} A 的 m m m 个特征值, p 1 , p 2 , ⋯   , p m boldsymbol{p}_1,boldsymbol{p}_2,cdots,boldsymbol{p}_m p 1 ​ , p 2 ​ , ⋯ , p m ​ 依次是与之对应的特征向量,如果 λ 1 , λ 2 , ⋯   , λ

    2024年02月07日
    浏览(13)
  • 机器学习——线性代数中矩阵和向量的基本介绍

    机器学习——线性代数中矩阵和向量的基本介绍

    矩阵的基本概念(这里不多说,应该都知道) 而向量就是一个特殊的矩阵,即向量只有一列,是个n*1的矩阵 注 :一般矩阵用大写字母表示,向量用小写字母表示 先从简单开始,即一个矩阵和一个向量相乘的运算 矩阵相乘的结果的维度为 m*k 矩阵乘法满足结合律不满足交换律

    2024年02月21日
    浏览(12)
  • 线性代数的学习和整理13: 函数与向量/矩阵

    线性代数的学习和整理13: 函数与向量/矩阵

    目录 1 函数与 向量/矩阵 2 初等数学的函数 2.1 函数 2.2 函数的定义:定义域  →映射→  值域 3  高等数学里的函数:定义域和陪域/到达域(非值域)的映射关系 3.1 函数 3.2 单射,满射,双射等都是针对定义域 和 陪域的 3.3 易错地方:值域较小且是被决定的 3.4 单射,满射,

    2024年02月11日
    浏览(26)
  • 线性代数中矩阵的特征值与特征向量

    作者:禅与计算机程序设计艺术 在线性代数中,如果一个$ntimes n$的方阵$A$满足如下两个条件之一: $A$存在实数特征值,即$exists xneq 0:Ax=kx$,其中$kin mathbb{R}$; $lambda_{max}(A)neq 0$($lambda_{max}(A)$表示$A$的最大特征值),且$||x_{lambda_{max}(A)}||=sqrt{frac{lambda_{max}(A)}{lambda_{

    2024年02月08日
    浏览(8)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包