ORB-SLAM内的卡方检验

这篇具有很好参考价值的文章主要介绍了ORB-SLAM内的卡方检验。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。


Reference:
  1. 卡方检验(Chi-square test/Chi-Square Goodness-of-Fit Test)
  2. 卡方检验详解分析与实例

1. 概念

  • 卡方值: χ 2 \chi^2 χ2 值表示观察值与理论值之间的偏离程度。计算这种偏离程度的基本思路如下:

    1. O O O 代表某个类别的观察频数 E E E 代表基于某个假设 H 0 H_0 H0 计算出的期望频数 O O O E E E 之差称为残差;
    2. 残差可以表示某一个类别观察值和理论值的偏离程度,但如果将残差简单相加以表示各类别观察频数与期望频数的差别,则有一定的不足之处。因为残差有正有负,相加后会彼此抵消,综合仍然为 0 0 0,为此可以将残差平方后求和;
    3. 另一方面,残差大小是一个相对概念,相对于期望频数为 10 10 10 时,期望频数为 20 20 20 的残差非常大,但相对于期望频数为 1000 1000 1000 20 20 20 的残差就很小了。考虑到这一点,人们又将残差平方除以期望频数再求和,以估计观察频数与期望频数的差别。

    进行上述操作之后,就得到了常用的 χ 2 \chi^2 χ2 统计量,其计算公式为:
    χ 2 = ∑ ( O − E ) 2 E = ∑ i = 1 k ( O i − E i ) 2 E i = ∑ i = 1 k ( O i − n p i ) 2 n p i ( i = 1 , 2 , 3 , . . . , k ) \chi^{2}=\sum{\frac{(O-E)^{2}}{E}}=\sum_{i=1}^{k}{\frac{(O_{i}-E_{i})^{2}}{E_{i}}}=\sum_{i=1}^{k}{\frac{(O_{i}-n p_{i})^{2}}{n p_{i}}}\quad{\mathrm{(i=1,2,3,...,k)}} χ2=E(OE)2=i=1kEi(OiEi)2=i=1knpi(Oinpi)2(i=1,2,3,...,k)其中, O i O_i Oi i i i 水平的观察频数, E i E_i Ei i i i 水平的期望频数, n n n 为总频数, p i p_i pi i i i 水平的期望概率, i i i 水平的期望频数 E i E_i Ei 等于总频数 n × i n\times i n×i 水平的期望概率 p i p_i pi k k k 为单元格数。当 n n n 比加大时, χ 2 \chi^2 χ2 统计量近似服从 k − 1 k-1 k1(计算 E i E_i Ei 时用到的参数个数)个自由度的卡方分布。

    由卡方的计算公式可知,当观察频数与期望频数完全一致时, χ 2 \chi^2 χ2 值为 0 0 0;观察频数与期望频数越接近,两者之间的差异越小, χ 2 \chi^2 χ2 值越小;反之,观察频数与期望频数差别越大,两者之间的差异越大, χ 2 \chi^2 χ2 值越大。换言之,大的 χ 2 \chi^2 χ2 值表明观察频数远离期望频数,即表明远离假设。小的 χ 2 \chi^2 χ2 值表明观察频数接近期望频数,接近假设。因此, χ 2 \chi^2 χ2 是观察频数与期望频数之间距离的一种度量指标,也是假设成立与否的度量指标。如果 χ 2 \chi^2 χ2 值小,研究者就倾向于不拒绝 H 0 H_0 H0;如果 χ 2 \chi^2 χ2 值大,就倾向于拒绝 H 0 H_0 H0。至于 χ 2 \chi^2 χ2 在每个具体研究中究竟要达到什么程度才能拒绝 H 0 H_0 H0,则要借助于卡方分布求出所对应的 P P P 来确定,这就引出了显著性水平的概念。

  • 显著性水平: 显著性水平是估计总体参数落在某一区间内可能犯错的概率,用 α \alpha α 表示,即当原假设为正确时,却把它滤掉了的概率或风险,通常取 α = 0.05 \alpha=0.05 α=0.05 α = 0.01 \alpha=0.01 α=0.01。这表明当做出接受原假设的决定时,其正确的可能性(概率)为 95 % 95\% 95% 99 % 99\% 99%

2. 卡方检验的基本思想

卡方检验是以 χ 2 \chi^2 χ2 分布为基础的一种常用假设检验方法,它的无效建设 H 0 H_0 H0 是:观察频数与期望频数没有差别。

该检验的基本思想是:首先假设 H 0 H_0 H0 成立,基于此前提计算出 χ 2 \chi^2 χ2 的值,它表示观察值与理论值之间的偏离程度。根据 χ 2 \chi^2 χ2 分布及自由度可以确定在 H 0 H_0 H0 假设成立的情况下获得当前统计量及更极端情况的概率 P P P。如果 P P P 值很小,说明观察值与理论值偏离程度太大,应当拒绝无效假设,表示比较资料之间有显著差异;否则就不能拒绝无效假设,尚不能认为样本所代表的实际情况和理论假设有差别。

根据自由度和显著性水平查询检验统计量临界值,其中纵轴为自由度,横轴为显著性水平阈值。比如检查单应阵的函数,点到点的重投影误差自由度为 2 2 2,在显著性水平为 0.05 0.05 0.05 时通过查表得阈值为 5.99 5.99 5.99
ORB-SLAM内的卡方检验

3. 卡方检测示例

为了验证肺癌与吸烟的关系,我们得到如下数据:

是否肺病患者 吸烟 不吸烟 合计 吸烟比例
158 169 327 48%
82 311 393 20%
合计 240 480 720 33%

首先假设吸烟与肺癌两者之间没有关系(这里应该不用先假设有没关系,越大就是越有关系,越小就是越没有关系,根据数值判断相关性),我们计算期望值(因为上面吸烟的比例为33%,因此在吸烟与肺癌没有关系的时候,肺癌患者吸烟与不吸烟的比例应该是33%,没有得肺癌的吸烟与不吸烟的比例也应该是33%):

是否肺病患者 吸烟 不吸烟 合计 吸烟比例
109 218 327 33%
131 262 393 33%
合计 240 480 720 33%

带入卡方计算公式:
χ 2 = ( 158 − 109 ) 2 109 + ( 169 − 218 ) 2 218 + ( 82 − 131 ) 2 131 + ( 311 − 262 ) 2 262 = 60.53 \chi^2=\frac{(158-109)^2}{109}+\frac{(169-218)^2}{218}+\frac{(82-131)^2}{131}+\frac{(311-262)^2}{262} =60.53 χ2=109(158109)2+218(169218)2+131(82131)2+262(311262)2=60.53自由度的计算方法,可以简单抽象成:(行数-1)*(列数-1),所以这里的自由度为 1 1 1

通过查表可得自由度为 1 1 1 时,显著性水平为 0.05 0.05 0.05,当卡方值小于 3.84 3.84 3.84 时,可以接受原假设,即变量之间没有相关性。卡方值越小,不相关的概率越大。现在卡方值远大于 3.84 3.84 3.84,说明两者不相关的概率很小,即抽烟与肺癌有关。

4. ORB-SLAM2中卡方检测剔除外点的策略

就特征点法的视觉SLAM而言,一般会计算重投影误差。具体而言,记 u \mathbf{u} u 为特征点的 2 D 2D 2D 位置, u ˉ \bar{\mathbf{u}} uˉ 为由地图点投影到图像上的 2 D 2D 2D 位置。重投影误差为:
e = u − u ˉ \mathbf{e}=\mathbf{u}-\mathbf{\bar{u}} e=uuˉ重投影误差服从高斯分布:
e ∼ N ( 0 , Σ ) \mathbf{e}\sim\mathcal{N}(\mathbf{0},\mathbf{\Sigma}) eN(0,Σ)其中,协方差 Σ \mathbf{\Sigma} Σ 一般根据特征点提取的金字塔层级决定。具体的,记提取ORB特征时,图像金字塔的每层缩小尺度为 s s s(ORB-SLAM中为1.2)。在ORB-SLAM中假设第 0 0 0 层的标准差为 p p p 个pixel(ORB-SLAM中设为了1个pixel);那么,一个在金字塔第 n n n 层提取的特征的重投影误差的协方差为:
Σ = ( s n × p ) 2 [ 1 0 0 1 ] \boldsymbol{\Sigma}=(s^n\times p)^2\begin{bmatrix}1&0\\ 0&1\end{bmatrix} Σ=(sn×p)2[1001] e = u − u ˉ \mathbf{e}=\mathbf{u}-\mathbf{\bar{u}} e=uuˉ 中的误差是一个 2 2 2 维向量,这里阈值不好设置,就把它变成一个标量,计算向量的内积 r r r(向量元素的平方和)。但是,这又有一个问题,不同金字塔层的特征点都用同一个阈值,是不是不合理呢?于是,在计算内积的时候,利用协方差进行加权(协方差表达了不确定度)。金字塔层级越高特征点提取精度越低,协方差 Σ \mathbf{\Sigma} Σ 越大,那么就有了:
r = e T Σ − 1 e r=\mathbf{e}^{T}\mathbf{\Sigma}^{-1}\mathbf{e} r=eTΣ1e利用协方差加权,起到了归一化的作用,具体如上式,可以变为:
r = ( Σ − 1 2 e ) T ( Σ − 1 2 e ) r=(\boldsymbol{\Sigma}^{-\frac{1}{2}}\mathbf{e})^T(\boldsymbol{\Sigma}^{-\frac{1}{2}}\mathbf{e}) r=(Σ21e)T(Σ21e)而:
( Σ − 1 2 e ) ∼ N ( 0 , I ) (\mathbf\Sigma^{-\frac{1}{2}}\mathbf e)\sim\mathcal N(\mathbf0,\mathbf I) (Σ21e)N(0,I)为多维标准正态分布,也就是说不同金字塔层提取的特征,计算的重投影误差都被归一化了,或者说去量纲化了,那么,我们只用一个阈值就可以了。

4.1 示例,卡方检验计算置信度得分: CheckFundamental()、CheckHomography()

根据重投影误差构造统计量 χ 2 \chi^2 χ2,其值越大,观察结果和期望结果之间的差别越显著,某次计算越可能用到了外点:文章来源地址https://www.toymoban.com/news/detail-460064.html

float Initializer::CheckHomography(const cv::Mat &H21, const cv::Mat &H12, vector<bool> &vbMatchesInliers, float sigma) {
  const int N = mvMatches12.size();

  //取出单应矩阵H各位上的值
  const float h11 = H21.at<float>(0, 0);
  const float h12 = H21.at<float>(0, 1);
  const float h13 = H21.at<float>(0, 2);
  const float h21 = H21.at<float>(1, 0);
  const float h22 = H21.at<float>(1, 1);
  const float h23 = H21.at<float>(1, 2);
  const float h31 = H21.at<float>(2, 0);
  const float h32 = H21.at<float>(2, 1);
  const float h33 = H21.at<float>(2, 2);

  const float h11inv = H12.at<float>(0, 0);
  const float h12inv = H12.at<float>(0, 1);
  const float h13inv = H12.at<float>(0, 2);
  const float h21inv = H12.at<float>(1, 0);
  const float h22inv = H12.at<float>(1, 1);
  const float h23inv = H12.at<float>(1, 2);
  const float h31inv = H12.at<float>(2, 0);
  const float h32inv = H12.at<float>(2, 1);
  const float h33inv = H12.at<float>(2, 2);

  vbMatchesInliers.resize(N);//标记是否是内点
  float score = 0;//置信度得分
  const float th = 5.991;//<---自由度为2(u,v),显著性水平为0.05的卡方分布对应的临界阈值
  const float invSigmaSquare = 1.0 / (sigma * sigma);//信息矩阵,方差平方的倒数

  for (int i = 0; i < N; i++) {//双向投影,计算加权投影误差
    bool bIn = true;

    //step1. 提取特征点对
    const cv::KeyPoint &kp1 = mvKeys1[mvMatches12[i].first];
    const cv::KeyPoint &kp2 = mvKeys2[mvMatches12[i].second];

    const float u1 = kp1.pt.x;
    const float v1 = kp1.pt.y;
    const float u2 = kp2.pt.x;
    const float v2 = kp2.pt.y;

    // Reprojection error in first image
    // x2in1 = H12*x2
    //step2. 计算img2到img1的重投影误差
    const float w2in1inv = 1.0 / (h31inv * u2 + h32inv * v2 + h33inv);
    const float u2in1 = (h11inv * u2 + h12inv * v2 + h13inv) * w2in1inv;
    const float v2in1 = (h21inv * u2 + h22inv * v2 + h23inv) * w2in1inv;
    const float squareDist1 = (u1 - u2in1) * (u1 - u2in1) + (v1 - v2in1) * (v1 - v2in1);
    const float chiSquare1 = squareDist1 * invSigmaSquare;

    //step3. 离群点标记上,非离群点累加计算得分
    if (chiSquare1 > th)
      bIn = false;
    else
      score += th - chiSquare1;

    // Reprojection error in second image
    // x1in2 = H21*x1
    //step4. 计算img1到img2的重投影误差
    const float w1in2inv = 1.0 / (h31 * u1 + h32 * v1 + h33);
    const float u1in2 = (h11 * u1 + h12 * v1 + h13) * w1in2inv;
    const float v1in2 = (h21 * u1 + h22 * v1 + h23) * w1in2inv;
    const float squareDist2 = (u2 - u1in2) * (u2 - u1in2) + (v2 - v1in2) * (v2 - v1in2);
    const float chiSquare2 = squareDist2 * invSigmaSquare;

    //step5. 离群点标记上,非离群点累加计算得分
    if (chiSquare2 > th)
      bIn = false;
    else
      score += th - chiSquare2;

    if (bIn)
      vbMatchesInliers[i] = true;
    else
      vbMatchesInliers[i] = false;
  }

  return score;
}

到了这里,关于ORB-SLAM内的卡方检验的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • SLAM ORB-SLAM2(20)查找基础矩阵

    在 《SLAM ORB-SLAM2(12)估算运动并初始地图点》 的 2.3. 计算H矩阵和F矩阵过程 中

    2024年03月17日
    浏览(57)
  • 基于ORB-SLAM3库搭建SLAM系统

    博客地址:https://www.cnblogs.com/zylyehuo/ ORB-SLAM3配置及安装教程 ORB-SLAM3配置安装及运行 Win 11pro VMware 17Pro Ubuntu 18.04 Eigen3 Pangolin Opencv3.4.3 ORB-SLAM3源码: https://github.com/UZ-SLAMLab/ORB_SLAM3 安装 Pangolin 需要的依赖工具 安装 Pangolin 官网下载地址:https://opencv.org/releases/page/5/ 下载之后放在

    2024年02月03日
    浏览(49)
  • ORB-SLAM3整体流程详解

    在之前,作者曾经转过一篇《一文详解ORB-SLAM3》的文章。那篇文章中提到了ORB-SLAM3是一个支持视觉、视觉加惯导、混合地图的SLAM系统,可以在单目,双目和RGB-D相机上利用针孔或者鱼眼模型运行。与ORB-SLAM2相比,ORB-SLAM3在处理大视差和长时间未观测到的场景时效果更好。它还

    2024年02月06日
    浏览(54)
  • ORB-SLAM3跑本地视频

    把录制的视频放入ORB-SLAM3文件夹内,文件命名为:myvideo.mp4 在同一目录下添加myvideo.yaml、myvideo.cc 重新编译ORB-SLAM3 会出现myvideo执行文件 在此文件夹打开终端输入: ./myvideo 即可运行视频

    2023年04月22日
    浏览(44)
  • ORB-SLAM2环境配置及运行

    本文是基于Ubuntu 20.04及OpenCV 4.6.0成功运行ORB-SLAM2,并在开源数据集上进行了测试。由于OpenCV和其他依赖库的版本较新,编译过程会出现一些问题,需要修改部分代码和CMakeLists.txt文件,这里做一个记录,也希望能帮到有需要的小伙伴。 开始尝试安装Eigen3.4.0和Pangolin-0.8版本,后

    2024年02月03日
    浏览(48)
  • SLAM ORB-SLAM2(21)基础矩阵的计算和评分

    在 《SLAM ORB-SLAM2(20)查找基础矩阵》 中了解到 查找基础矩阵主要过程: 特征点坐标归一化 Normalize 函数 Normalize 参考 《SLAM ORB-SLAM2(14)特征点坐标归一化》 选择归一化之后的特征点 八点法计算基础矩阵 ComputeF21 评分并评优 CheckFundamental 现在来看看基础矩阵如何计算和评分

    2024年03月09日
    浏览(47)
  • ORB-SLAM3算法2之EuRoc、TUM和KITTI开源数据集运行ORB-SLAM3生成轨迹并用evo工具评估轨迹

    ORB-SLAM3算法1 已成功编译安装ORB-SLAM3到本地,本篇目的是用 EuRoc 开源数据来运

    2024年02月08日
    浏览(41)
  • ORB-SLAM3 数据集配置与评价

    在ORB-SLAM3运行EuRoC和TUM-VI数据集并作以评价。EuRoC利用微型飞行器(MAV ) 收集的视觉惯性数据集,TUM-VI 是由实验人员手持视觉-惯性传感器收集的数据集。这两个是在视觉SLAM中比较常用的公开数据集,所以测试并加以记录。 1、EuRoC官网下载 从官网下载Euroc数据集,ASL格式 2、新

    2024年02月15日
    浏览(71)
  • ORB-SLAM3配置及安装教程(2023.3)

    配置了好多次ORB-SLAM3,看了一些博客,都写的不是很完整,这次根据自己的经验以及从一个新系统开始 的实际的安装过程,记录一下详细的步骤。 ps.我是用的虚拟机安装的,并且是在一个新系统上开始配置的 所以我的操作步骤是在一个全新的Ubuntu上做的,参考博客的同学注

    2023年04月14日
    浏览(36)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包