OpenCV利用透视变换矫正图像

这篇具有很好参考价值的文章主要介绍了OpenCV利用透视变换矫正图像。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1、概述

  案例:使用OpenCV将一张折射的图片给矫正过来

  实现步骤:

    1.载入图像

    2.图像灰度化

    3.二值分割

    4.形态学操作去除噪点

    5.轮廓发现

    6.使用霍夫直线检测,检测上下左右四条直线(有可能是多条,但是无所谓)

    7.绘制出直线

    8.寻找与定位上下左右是条直线

    9.拟合四条直线方程

    10.计算四条直线的交点,ps:这四个交点其实就是我们最终要寻找的,用于透视变换使用的

    11.进行透视变换

    12.输出透视变换的结果

  说明:

    解释一下为啥是上面那些步骤。

    1.其实我们的最终目的是通过透视矩阵getPerspectiveTransform+透视变换warpPerspective来完成图像的矫正

    2.但是getPerspectiveTransform需要两个参数,输入矩阵参数和目标矩阵参数。

    3.由于输入矩阵参数就是原图像是个角的顶点,由于我们没有所以要求出来

    4.所以我们以上的所有步骤都是为11、12步打基础的

  ps:核心就是利用透视矩阵做透视变换

  重点:

    1.直线方程y=kx+c

    2.如果两条直线有交点,则必有k1x1+c1=k2x2+c2

2、代码演示

//【1】载入图像
    Mat src = imread(filePath);
    if(src.empty()){
        qDebug()<<"图片为空";
        return;
    }
    imshow("src",src);

    //【2】图像灰度化
    Mat gray;
    cvtColor(src,gray,COLOR_BGR2GRAY);
    //【3】执行二值分割
    threshold(gray,gray,0,255,THRESH_BINARY_INV|THRESH_OTSU);
    imshow("threshold",gray);
    //【4】执行形态学开操作去除图像中的造点
    Mat kernel = getStructuringElement(MORPH_RECT,Size(5,5),Point(-1,-1));
    morphologyEx(gray,gray,MORPH_CLOSE,kernel,Point(-1,-1),3);
    imshow("morphologyEx",gray);
    //【5】轮廓发现
    bitwise_not(gray,gray);
    imshow("bitwise_not",gray);

    vector<vector<Point>> contours;
    vector<Vec4i> hier;
    RNG rng(12345);
    findContours(gray,contours,hier,RETR_TREE,CHAIN_APPROX_SIMPLE);
    Mat colorImage = Mat::zeros(gray.size(),CV_8UC3);
    for(size_t i = 0;i<contours.size();i++){
        Rect rect = boundingRect(contours[i]);
        //过滤目标轮廓
        if(rect.width<src.cols-5&&rect.height<src.rows-5&&rect.width>src.cols/2){
            drawContours(colorImage,contours,i,Scalar(rng.uniform(0,255),rng.uniform(0,255),rng.uniform(0,255)),1);
        }

    }
    imshow("findContours",colorImage);

    //【6】使用霍夫直线检测
    vector<Vec4i> lines;
    cvtColor(colorImage,colorImage,COLOR_BGR2GRAY);
    kernel = getStructuringElement(MORPH_RECT,Size(3,3),Point(-1,-1));
    dilate(colorImage,colorImage,kernel,Point(-1,-1),1);
    imshow("colorImage_gray",colorImage);
    int accu = min(src.cols*0.5, src.rows*0.5);
    HoughLinesP(colorImage,lines,1,CV_PI/180,accu,accu,0);
    //【7】绘制出直线
    Mat lineColorImage = Mat::zeros(gray.size(),CV_8UC3);
    qDebug()<<"line count:"<<lines.size();
    for(size_t i = 0;i<lines.size();i++){
        Vec4i ll = lines[i];
        line(lineColorImage,Point(ll[0],ll[1]),Point(ll[2],ll[3]),Scalar(rng.uniform(0,255),rng.uniform(0,255),rng.uniform(0,255)),2,LINE_8);
    }
    imshow("lines",lineColorImage);


    //【8】寻找与定位上下左右四条直线
    int deltah  = 0;
    int width = src.cols;
    int height = src.rows;
    Vec4i topLine, bottomLine;
    Vec4i leftLine, rightLine;
    for(size_t i=0;i<lines.size();i++){
        Vec4i ln = lines[i];
        deltah  = abs(ln[3]-ln[1]);//直线高度
        if (ln[3] < height / 2.0 && ln[1] < height / 2.0 && deltah < accu - 1) {
            if (topLine[3] > ln[3] && topLine[3]>0) {
                topLine = lines[i];
            } else {
                topLine = lines[i];
            }
        }
        if (ln[3] > height / 2.0 && ln[1] > height / 2.0 && deltah < accu - 1) {
            bottomLine = lines[i];
        }
        if (ln[0] < width / 2.0 && ln[2] < width/2.0) {
            leftLine = lines[i];
        }
        if (ln[0] > width / 2.0 && ln[2] > width / 2.0) {
            rightLine = lines[i];
        }
    }

    //直线方程y=kx+c
    // 【9】拟合四条直线方程
    float k1, c1;
    k1 = float(topLine[3] - topLine[1]) / float(topLine[2] - topLine[0]);
    c1 = topLine[1] - k1*topLine[0];
    float k2, c2;
    k2 = float(bottomLine[3] - bottomLine[1]) / float(bottomLine[2] - bottomLine[0]);
    c2 = bottomLine[1] - k2*bottomLine[0];
    float k3, c3;
    k3 = float(leftLine[3] - leftLine[1]) / float(leftLine[2] - leftLine[0]);
    c3 = leftLine[1] - k3*leftLine[0];
    float k4, c4;
    k4 = float(rightLine[3] - rightLine[1]) / float(rightLine[2] - rightLine[0]);
    c4 = rightLine[1] - k4*rightLine[0];

    // 【10】四条直线交点,其实最终的目的就是找这是条直线的交点
    Point p1; // 左上角
    p1.x = static_cast<int>((c1 - c3) / (k3 - k1));
    p1.y = static_cast<int>(k1*p1.x + c1);
    Point p2; // 右上角
    p2.x = static_cast<int>((c1 - c4) / (k4 - k1));
    p2.y = static_cast<int>(k1*p2.x + c1);
    Point p3; // 左下角
    p3.x = static_cast<int>((c2 - c3) / (k3 - k2));
    p3.y = static_cast<int>(k2*p3.x + c2);
    Point p4; // 右下角
    p4.x = static_cast<int>((c2 - c4) / (k4 - k2));
    p4.y = static_cast<int>(k2*p4.x + c2);

    // 显示四个点坐标
    circle(lineColorImage, p1, 2, Scalar(255, 0, 0), 2, 8, 0);
    circle(lineColorImage, p2, 2, Scalar(255, 0, 0), 2, 8, 0);
    circle(lineColorImage, p3, 2, Scalar(255, 0, 0), 2, 8, 0);
    circle(lineColorImage, p4, 2, Scalar(255, 0, 0), 2, 8, 0);
    line(lineColorImage, Point(topLine[0], topLine[1]), Point(topLine[2], topLine[3]), Scalar(0, 255, 0), 2, 8, 0);
    imshow("four corners", lineColorImage);

    // 【11】透视变换
    vector<Point2f> src_corners(4);
    src_corners[0] = p1;
    src_corners[1] = p2;
    src_corners[2] = p3;
    src_corners[3] = p4;

    vector<Point2f> dst_corners(4);
    dst_corners[0] = Point(0, 0);
    dst_corners[1] = Point(width, 0);
    dst_corners[2] = Point(0, height);
    dst_corners[3] = Point(width, height);

    // 【12】获取透视变换矩阵,并最终显示变换后的结果
    Mat resultImage;
    Mat warpmatrix = getPerspectiveTransform(src_corners, dst_corners);
    warpPerspective(src, resultImage, warpmatrix, resultImage.size(), INTER_LINEAR);
    imshow("Final Result", resultImage);

3、示例图片

OpenCV利用透视变换矫正图像

 本文福利,费领取Qt开发学习资料包、技术视频,内容包括(C++语言基础,Qt编程入门,QT信号与槽机制,QT界面开发-图像绘制,QT网络,QT数据库编程,QT项目实战,QSS,OpenCV,Quick模块,面试题等等)↓↓↓↓↓↓见下面↓↓文章底部点击费领取↓↓文章来源地址https://www.toymoban.com/news/detail-460143.html

到了这里,关于OpenCV利用透视变换矫正图像的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【OpenCV实现图像:使用OpenCV进行图像处理之透视变换】

    透视变换(Perspective Transformation)是一种图像处理中常用的变换手段,它用于将图像从一个视角映射到另一个视角,常被称为投影映射。透视变换可以用于矫正图像中的透视畸变,使得图像中的物体在新的视平面上呈现更加规则的形状。 透视变换通常涉及到寻找图像中的特定

    2024年02月03日
    浏览(63)
  • OpenCV(图像处理)-基于Python-图像的基本变换-平移-翻转-仿射变换-透视变换

    为了方便开发人员的操作,OpenCV还提供了一些图像变换的API,本篇文章讲简单介绍各种API的使用,并附上一些样例。 图像缩放函数,用于把图像按指定的尺寸放大或缩小。 dst = cv2.resize(src, dsize, fx, fy, interpolation) dst = 生成的目的图像 src:需要变换的原图像 disize:(x, y)需要

    2024年02月08日
    浏览(67)
  • Python中OpenCV透视变换恢复扭曲图像

    在处理图像问题时,经常会遇到将要处理的目标的位置是斜的,需要使用透视变换进行矫正。如下图,该图片中左边的目标是扭曲倾斜拍摄的,那么任务就是将其矫正过来,如下图右图所示。 前提1:这里假设我已经知道四个点坐标(可用深度学习方法检测/分割)和目标宽高

    2024年01月20日
    浏览(49)
  • 【Python图像处理篇】opencv中的仿射变换和透视变换

    仿射变换可以将矩形图片映射为平行四边形, 透视变换可以将矩形图片映射为任意四边形。 opencv提供了两个变换函数,cv2.warpAffine和cv2.warpPerspective, 使用这两个函数可以实现所有类型的变换。 cv2.warpAffine 接收的参数2x3的变换矩阵; 而 cv2.warpPerspective 接收的3x3的变换矩阵。

    2024年01月24日
    浏览(67)
  • Opencv-C++笔记 (16) : 几何变换 (图像的翻转(镜像),平移,旋转,仿射,透视变换)

    图像旋转是指图像按照某个位置转动一定的角度的过程,旋转中图像仍保持着原始尺寸。图像旋转后图像水平对称轴、垂直对称轴及中心坐标原点都可能会发生变换,因此需要对图像旋转中的坐标进行相应转换。 假设有一个点:P(x,y),它在绕原点 O(0,0) 旋转 β 后,被转换成

    2024年02月14日
    浏览(71)
  • opencv-25 图像几何变换04- 透视 cv2.warpPerspective()

    透视是一种几何学概念,用于描述在三维空间中观察物体时,由于视角的不同而产生的变形效果。在现实世界中,当我们从不同的角度或位置观察物体时,它们会呈现出不同的形状和大小。这种现象被称为透视效果。 透视效果主要由以下几个因素造成: 远近关系 :在视野范

    2024年02月15日
    浏览(51)
  • 基于OpenCV的图像透视变换详解(从理论到实现再到实践)

             一直无法理解两种仿射变换与透视变换的区别,因此详细学习了两种变换的具体细节,重新书写了公式,并给出自己的一些看法。         可以认为, 仿射变换 是 透视变换 的一种 特例 。         仿射变换 是一种 二维坐标 到 二维坐标 之间的 线性变换

    2024年02月01日
    浏览(35)
  • 图像的透视变换

    透视变换是一种图像变换技术,用于将图像投影到新的视平面上。它可以通过对图像进行透视、旋转、缩放和扭曲等操作,从而改变图像的视角和形状。在OpenCV中,我们可以使用 cv2.warpPerspective 函数来实现透视变换操作。 透视变换的原理是基于透视几何学的原理。给定原始图

    2024年02月11日
    浏览(29)
  • 图像尺寸、仿射、透视变换

      1.2.1 图像缩放  1.2.2 图像翻转 1.2.3 图像拼接    4个像素坐标,图有误  3.4 透视变换函数  

    2024年02月12日
    浏览(66)
  • 用OpenCV进行透视变换

    欢迎回来!今天我们将焦点聚焦在我在图像处理中最喜欢的话题之一——透视变换。使用该技术,可以灵活方便的实现各种各样好玩的特效。 闲话少说,我们直接开始吧! 我们首先展开对单应矩阵的深入研究。作为图像处理的基本工具,它在捕捉图像中的几何变换方面发挥

    2024年02月10日
    浏览(43)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包