1. 以Torchvision中的CIFAR10为例
dataset.py
Ps:如果是从其他地方下载的gz文件,直接建立一个dataset文件夹然后将gz文件放进去,再运行。
import torchvision
train_set = torchvision.datasets.CIFAR10(root="./dataset", train=True, download=True)
test_set = torchvision.datasets.CIFAR10(root='./dataset', train=False, download=True)
img, target = test_set[0]
print(img, target)
print(test_set.classes[target])
img.show()
result:
<PIL.Image.Image image mode=RGB size=32x32 at 0x1F9FA5D3E50> 3
cat
2. 加入transforms
dataset.py
import torchvision
from torch.utils.tensorboard import SummaryWriter
dataset_transform = torchvision.transforms.Compose([
torchvision.transforms.ToTensor()
])
train_set = torchvision.datasets.CIFAR10(root="./dataset", train=True, transform=dataset_transform, download=True)
test_set = torchvision.datasets.CIFAR10(root='./dataset', train=False, transform=dataset_transform, download=True)
print(test_set[0])
writer = SummaryWriter('cifa10')
for i in range(10):
img, target = test_set[i]
writer.add_image('test_set', img, i)
writer.close()
result:
(tensor([[[0.6196, 0.6235, 0.6471, ..., 0.5373, 0.4941, 0.4549],
[0.5961, 0.5922, 0.6235, ..., 0.5333, 0.4902, 0.4667],
[0.5922, 0.5922, 0.6196, ..., 0.5451, 0.5098, 0.4706],
...,
[0.2667, 0.1647, 0.1216, ..., 0.1490, 0.0510, 0.1569],
[0.2392, 0.1922, 0.1373, ..., 0.1020, 0.1137, 0.0784],
[0.2118, 0.2196, 0.1765, ..., 0.0941, 0.1333, 0.0824]],[[0.4392, 0.4353, 0.4549, ..., 0.3725, 0.3569, 0.3333],
[0.4392, 0.4314, 0.4471, ..., 0.3725, 0.3569, 0.3451],
[0.4314, 0.4275, 0.4353, ..., 0.3843, 0.3725, 0.3490],
...,
[0.4863, 0.3922, 0.3451, ..., 0.3804, 0.2510, 0.3333],
[0.4549, 0.4000, 0.3333, ..., 0.3216, 0.3216, 0.2510],
[0.4196, 0.4118, 0.3490, ..., 0.3020, 0.3294, 0.2627]],[[0.1922, 0.1843, 0.2000, ..., 0.1412, 0.1412, 0.1294],
[0.2000, 0.1569, 0.1765, ..., 0.1216, 0.1255, 0.1333],
[0.1843, 0.1294, 0.1412, ..., 0.1333, 0.1333, 0.1294],
...,
[0.6941, 0.5804, 0.5373, ..., 0.5725, 0.4235, 0.4980],
[0.6588, 0.5804, 0.5176, ..., 0.5098, 0.4941, 0.4196],
[0.6275, 0.5843, 0.5176, ..., 0.4863, 0.5059, 0.4314]]]), 3)Process finished with exit code 0文章来源:https://www.toymoban.com/news/detail-460182.html
文章来源地址https://www.toymoban.com/news/detail-460182.html
到了这里,关于PyTorch-torchvision的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!