【论文合集】Awesome Transfer Learning

这篇具有很好参考价值的文章主要介绍了【论文合集】Awesome Transfer Learning。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

Papers (论文)

1.Introduction and Tutorials (简介与教程)

2.Transfer Learning Areas and Papers (研究领域与相关论文)

3.Theory and Survey (理论与综述)

4.Code (代码)

5.Transfer Learning Scholars (著名学者)

6.Transfer Learning Thesis (硕博士论文)

7.Datasets and Benchmarks (数据集与评测结果)

8.Transfer Learning Challenges (迁移学习比赛)

Journals and Conferences

Applications (迁移学习应用)

Other Resources (其他资源)

来源 


Papers (论文)

Awesome transfer learning papers (迁移学习文章汇总)

  • Paperweekly: A website to recommend and read paper notes

Latest papers:

  • By topic: doc/awesome_papers.md
  • By date: doc/awesome_paper_date.md

Updated at 2023-04-27:

  • Multi-Source to Multi-Target Decentralized Federated Domain Adaptation [arxiv]

    • Multi-source to multi-target federated domain adaptation 多源多目标的联邦域自适应
  • ICML'23 AdaNPC: Exploring Non-Parametric Classifier for Test-Time Adaptation [arxiv]

    • Adaptive test-time adaptation 非参数化分类器进行测试时adaptation

Updated at 2023-04-23:

  • Improved Test-Time Adaptation for Domain Generalization [arxiv]

    • Improved test-time adaptation for domain generalization
  • Reweighted Mixup for Subpopulation Shift [arxiv]

    • Reweighted mixup for subpopulation shift

Updated at 2023-04-18:

  • CVPR'23 Zero-shot Generative Model Adaptation via Image-specific Prompt Learning [arxiv]

    • Zero-shot generative model adaptation via image-specific prompt learning 零样本的生成模型adaptation
  • Source-free Domain Adaptation Requires Penalized Diversity [arxiv]

    • Source-free DA requires penalized diversity
  • Domain Generalization with Adversarial Intensity Attack for Medical Image Segmentation [arxiv]

    • Domain generalization for medical segmentation 用domain generalization进行医学分割
  • CVPR'23 Meta-causal Learning for Single Domain Generalization [arxiv]

    • Meta-causal learning for domain generalization
  • Domain Generalization In Robust Invariant Representation [arxiv]

    • Domain generalization in robust invariant representation

Updated at 2023-04-10:

  • Beyond Empirical Risk Minimization: Local Structure Preserving Regularization for Improving Adversarial Robustness [arxiv]

    • Local structure preserving for adversarial robustness 通过保留局部结构来进行对抗鲁棒性
  • TFS-ViT: Token-Level Feature Stylization for Domain Generalization [arxiv]

    • Token-level feature stylization for domain generalization 用token-level特征变换进行domain generalization
  • Are Data-driven Explanations Robust against Out-of-distribution Data? [arxiv]

    • Data-driven explanations robust? 探索数据驱动的解释是否是OOD鲁棒的
  • ERM++: An Improved Baseline for Domain Generalization [arxiv]

    • Improved ERM for domain generalization 提高的ERM用于domain generalization

Updated at 2023-04-04:

  • CVPR'23 Feature Alignment and Uniformity for Test Time Adaptation [arxiv]

    • Feature alignment for test-time adaptation 使用特征对齐进行测试时adaptation
  • Finding Competence Regions in Domain Generalization [arxiv]

    • Finding competence regions in domain generalization 在DG中发现能力区域
  • CVPR'23 TWINS: A Fine-Tuning Framework for Improved Transferability of Adversarial Robustness and Generalization [arxiv]

    • Improve generalization and adversarial robustness 同时提高鲁棒性和泛化性
  • CVPR'23 Trainable Projected Gradient Method for Robust Fine-tuning [arxiv]

    • Trainable PGD for robust fine-tuning 可训练的pgd用于鲁棒的微调技术
  • Parameter-Efficient Tuning Makes a Good Classification Head [arxiv]

    • Parameter-efficient tuning makes a good classification head 参数高效的迁移学习成就一个好的分类头
  • Complementary Domain Adaptation and Generalization for Unsupervised Continual Domain Shift Learning [arxiv]

    • Continual domain shift learning using adaptation and generalization 使用 adaptation和DG进行持续分布变化的学习

1.Introduction and Tutorials (简介与教程)

Want to quickly learn transfer learning?想尽快入门迁移学习?看下面的教程。

  • Books 书籍

    • Introduction to Transfer Learning: Algorithms and Practice [Buy or read]
    • 《迁移学习》(杨强) [Buy] [English version]
    • 《迁移学习导论》(王晋东、陈益强著) [Homepage] [Buy]
  • Blogs 博客

    • Zhihu blogs - 知乎专栏《小王爱迁移》系列文章
  • Video tutorials 视频教程

    • Transfer learning 迁移学习:
      • Recent advance of transfer learning - 2022年最新迁移学习发展现状探讨
      • Definitions of transfer learning area - 迁移学习领域名词解释 [Article]
      • Transfer learning by Hung-yi Lee @ NTU - 台湾大学李宏毅的视频讲解(中文视频)
    • Domain generalization 领域泛化:
      • IJCAI-ECAI'22 tutorial on domain generalization - 领域泛化tutorial
      • Domain generalization - 迁移学习新兴研究方向领域泛化
    • Domain adaptation 领域自适应:
      • Domain adaptation - 迁移学习中的领域自适应方法(中文)
  • Brief introduction and slides 简介与ppt资料

    • Recent advance of transfer learning
    • Domain generalization survey
    • Brief introduction in Chinese
      • PPT (English) | PPT (中文)
    • 迁移学习中的领域自适应方法 Domain adaptation: PDF | Video on Bilibili | Video on Youtube
    • Tutorial on transfer learning by Qiang Yang: IJCAI'13 | 2016 version
  • Talk is cheap, show me the code 动手教程、代码、数据

    • Pytorch tutorial on transfer learning
      • Pytorch finetune
      • DeepDA: a unified deep domain adaptation toolbox
      • DeepDG: a unified deep domain generalization toolbox
      • 更多 More...
  • Transfer Learning Scholars and Labs - 迁移学习领域的著名学者、代表工作及实验室介绍

  • Negative transfer - 负迁移


2.Transfer Learning Areas and Papers (研究领域与相关论文)

  • Survey
  • Theory
  • Per-training/Finetuning
  • Knowledge distillation
  • Traditional domain adaptation
  • Deep domain adaptation
  • Domain generalization
  • Source-free domain adaptation
  • Multi-source domain adaptation
  • Heterogeneous transfer learning
  • Online transfer learning
  • Zero-shot / few-shot learning
  • Multi-task learning
  • Transfer reinforcement learning
  • Transfer metric learning
  • Federated transfer learning
  • Lifelong transfer learning
  • Safe transfer learning
  • Transfer learning applications

3.Theory and Survey (理论与综述)

Here are some articles on transfer learning theory and survey.

Survey (综述文章):

  • 2023 Source-Free Unsupervised Domain Adaptation: A Survey [arxiv]
  • 2022 Transfer Learning for Future Wireless Networks: A Comprehensive Survey
  • 2022 A Review of Deep Transfer Learning and Recent Advancements
  • 2022 Transferability in Deep Learning: A Survey, from Mingsheng Long in THU.
  • 2021 Domain generalization: IJCAI-21 Generalizing to Unseen Domains: A Survey on Domain Generalization | 知乎文章 | 微信公众号
    • First survey on domain generalization
    • 第一篇对Domain generalization (领域泛化)的综述
  • 2021 Vision-based activity recognition: A Survey of Vision-Based Transfer Learning in Human Activity Recognition
  • 2021 ICSAI A State-of-the-Art Survey of Transfer Learning in Structural Health Monitoring
  • 2020 Transfer learning: survey and classification, Advances in Intelligent Systems and Computing.
  • 2020 迁移学习最新survey,来自中科院计算所庄福振团队,发表在Proceedings of the IEEE: A Comprehensive Survey on Transfer Learning
  • 2020 负迁移的综述:Overcoming Negative Transfer: A Survey
  • 2020 知识蒸馏的综述: Knowledge Distillation: A Survey
  • 用transfer learning进行sentiment classification的综述:A Survey of Sentiment Analysis Based on Transfer Learning
  • 2019 一篇新survey:Transfer Adaptation Learning: A Decade Survey
  • 2018 一篇迁移度量学习的综述: Transfer Metric Learning: Algorithms, Applications and Outlooks
  • 2018 一篇最近的非对称情况下的异构迁移学习综述:Asymmetric Heterogeneous Transfer Learning: A Survey
  • 2018 Neural style transfer的一个survey:Neural Style Transfer: A Review
  • 2018 深度domain adaptation的一个综述:Deep Visual Domain Adaptation: A Survey
  • 2017 多任务学习的综述,来自香港科技大学杨强团队:A survey on multi-task learning
  • 2017 异构迁移学习的综述:A survey on heterogeneous transfer learning
  • 2017 跨领域数据识别的综述:Cross-dataset recognition: a survey
  • 2016 A survey of transfer learning。其中交代了一些比较经典的如同构、异构等学习方法代表性文章。
  • 2015 中文综述:迁移学习研究进展
  • 2010 A survey on transfer learning
  • Survey on applications - 应用导向的综述:
    • 视觉domain adaptation综述:Visual Domain Adaptation: A Survey of Recent Advances
    • 迁移学习应用于行为识别综述:Transfer Learning for Activity Recognition: A Survey
    • 迁移学习与增强学习:Transfer Learning for Reinforcement Learning Domains: A Survey
    • 多个源域进行迁移的综述:A Survey of Multi-source Domain Adaptation。

Theory (理论文章):

  • ICML-20 Few-shot domain adaptation by causal mechanism transfer
    • The first work on causal transfer learning
    • 日本理论组大佬Sugiyama的工作,causal transfer learning
  • CVPR-19 Characterizing and Avoiding Negative Transfer
    • Characterizing and avoid negative transfer
    • 形式化并提出如何避免负迁移
  • ICML-20 On Learning Language-Invariant Representations for Universal Machine Translation
    • Theory for universal machine translation
    • 对统一机器翻译模型进行了理论论证
  • NIPS-06 Analysis of Representations for Domain Adaptation
  • ML-10 A Theory of Learning from Different Domains
  • NIPS-08 Learning Bounds for Domain Adaptation
  • COLT-09 Domain adaptation: Learning bounds and algorithms
  • MMD paper:A Hilbert Space Embedding for Distributions and A Kernel Two-Sample Test
  • Multi-kernel MMD paper: Optimal kernel choice for large-scale two-sample tests

4.Code (代码)

Unified codebases for:

  • Deep domain adaptation
  • Deep domain generalization
  • See all codes here: transferlearning/code at master · jindongwang/transferlearning · GitHub.

More: see HERE and HERE for an instant run using Google's Colab.


5.Transfer Learning Scholars (著名学者)

Here are some transfer learning scholars and labs.

全部列表以及代表工作性见这里

Please note that this list is far not complete. A full list can be seen in here. Transfer learning is an active field. If you are aware of some scholars, please add them here.


6.Transfer Learning Thesis (硕博士论文)

Here are some popular thesis on transfer learning.

这里, 提取码:txyz。


7.Datasets and Benchmarks (数据集与评测结果)

Please see HERE for the popular transfer learning datasets and benchmark results.

这里整理了常用的公开数据集和一些已发表的文章在这些数据集上的实验结果。


8.Transfer Learning Challenges (迁移学习比赛)

  • Visual Domain Adaptation Challenge (VisDA)

Journals and Conferences

See here for a full list of related journals and conferences.


Applications (迁移学习应用)

  • Computer vision
  • Medical and healthcare
  • Natural language processing
  • Time series
  • Speech
  • Multimedia
  • Recommendation
  • Human activity recognition
  • Autonomous driving
  • Others

See HERE for transfer learning applications.

迁移学习应用请见这里。


Other Resources (其他资源)

  • Call for papers:

    • Advances in Transfer Learning: Theory, Algorithms, and Applications, DDL: October 2021
  • Related projects:

    • Salad: A semi-supervised domain adaptation library

来源 

jindongwang/transferlearning: Transfer learning / domain adaptation / domain generalization / multi-task learning etc. Papers, codes, datasets, applications, tutorials.-迁移学习 (github.com)文章来源地址https://www.toymoban.com/news/detail-460542.html

到了这里,关于【论文合集】Awesome Transfer Learning的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • 迁移学习(Transfer Learning)

      迁移学习作为机器学习的一个分支,一直比较好奇,接着这篇文章对迁移学习做一个简单的了解(本篇只涉及外围,没有太多细节)。文章围绕以下主题产生:   1.迁移学习概要   2.迁移学习的分类   3.迁移学习的应用场景? 一、迁移学习概要   迁移学习(Trans

    2024年02月16日
    浏览(9)
  • 深度学习|9.7迁移学习transfer learning

    深度学习|9.7迁移学习transfer learning

    迁移学习是指将针对某项任务学习到的知识应用到其他任务的问题解决中去。 可以下载别人训练好的网络,保留网络中训练好的参数(参数分两种,一种是人为设置好的超参数,另外一种是在训练过程中学习/调整到的参数) 注意的是,原先训练好的网络可能会有多个输出结

    2024年01月20日
    浏览(8)
  • 第八章 模型篇:transfer learning for computer vision

    第八章 模型篇:transfer learning for computer vision

    参考教程: transfer-learning transfer-learning tutorial 很少会有人从头开始训练一个卷积神经网络,因为并不是所有人都有机会接触到大量的数据。常用的选择是在一个非常大的模型上预训练一个模型,然后用这个模型为基础,或者固定它的参数用作特征提取,来完成特定的任务。

    2024年02月11日
    浏览(7)
  • 李宏毅机器学习作业11——Transfer Learning,Domain Adversarial Training

    李宏毅机器学习作业11——Transfer Learning,Domain Adversarial Training

    Domain Adversarial Training见: ​李宏毅机器学习——领域适应Domain Adaptation_iwill323的博客-CSDN博客_领域适应 迁移学习参见2022CS231n PPT笔记 - 迁移学习_iwill323的博客-CSDN博客_cs231n ppt 目录 任务和数据集 任务 数据集 方法论:DaNN 导包 数据处理 显示图片 Canny Edge Detection transforms datas

    2024年02月09日
    浏览(8)
  • Transfer learning in computer vision with TensorFlow Hu

    作者:禅与计算机程序设计艺术 Transfer learning is a machine learning technique that allows a model to learn new knowledge from an existing trained model on a similar task. Transfer learning can be useful for a variety of tasks such as image classification, object detection, and speech recognition. However, transfer learning has its own set of c

    2024年02月07日
    浏览(6)
  • 深入理解预训练(pre-learning)、微调(fine-tuning)、迁移学习(transfer learning)三者的联系与区别

    深入理解预训练(pre-learning)、微调(fine-tuning)、迁移学习(transfer learning)三者的联系与区别

    你需要搭建一个网络模型来完成一个特定的图像分类的任务。首先,你需要随机初始化参数,然后开始训练网络,不断调整参数,直到网络的损失越来越小。在训练的过程中,一开始初始化的参数会不断变化。当你觉得结果很满意的时候,你就可以将训练模型的参数保存下来

    2024年02月15日
    浏览(18)
  • LLM微调 | Adapter: Parameter-Efficient Transfer Learning for NLP

    LLM微调 | Adapter: Parameter-Efficient Transfer Learning for NLP

    目的:大模型预训练+微调范式,微调成本高。adapter只只微调新增的小部分参数【但adapter增加了模型层数,引入了额外的推理延迟。】 Adapters最初来源于CV领域的《Learning multiple visual domains with residual adapters》一文,其核心思想是在神经网络模块基础上添加一些残差模块,并只

    2024年02月14日
    浏览(10)
  • TOWARDS A UNIFIED VIEW OF PARAMETER-EFFICIENT TRANSFER LEARNING

    TOWARDS A UNIFIED VIEW OF PARAMETER-EFFICIENT TRANSFER LEARNING

    本文也是属于LLM系列的文章,针对《TOWARDS A UNIFIED VIEW OF PARAMETER-EFFICIENT TRANSFER LEARNING》的翻译。 在下游任务上微调大型预训练语言模型已经成为NLP中事实上的学习范式。然而,传统的方法对预训练模型的所有参数进行微调,随着模型大小和任务数量的增长,这变得令人望而却

    2024年02月11日
    浏览(5)
  • NILM非侵入式负荷识别(papers with code、data)带代码的论文整理——(论文及实现代码篇) 全网最全

    NILM非侵入式负荷识别(papers with code、data)带代码的论文整理——(论文及实现代码篇) 全网最全

            研究生三年快毕业了,毕业前整理一下该领域的研究工作。正所谓,我栽树,后人乘凉。研究NILM的时候,个人觉得最快的方法是直接复现别人的论文,或者甚至用别人论文的代码直接跑出来体会整个流程(数据集导入-数据预处理-运行模型-输出结果)。研究生三

    2024年02月05日
    浏览(13)
  • NILM非侵入式负荷识别(papers with code、data)带代码的论文整理——(公开数据集、工具、和性能指标篇) 全网最全

    NILM非侵入式负荷识别(papers with code、data)带代码的论文整理——(公开数据集、工具、和性能指标篇) 全网最全

    Q1:文章里面没有附上代码链接的文章是不是没有源码? Q2:xxx数据集找不到,xxx代码网址打不开了,博主能不能发我一份? 这篇文章主要介绍用于非侵入式负荷识别领域目前的公开数据集、工具和其它等,如果需要看论文及具体代码实现,看我上一篇的文章。 其外, 不是

    2023年04月20日
    浏览(12)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包