Cesium-源码修改-gltf增加纹理贴图改变3dtiles外观

这篇具有很好参考价值的文章主要介绍了Cesium-源码修改-gltf增加纹理贴图改变3dtiles外观。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、需求

        Cesium支持加载gltf和3dtiles等三维数据模型,实现了很好的封装,往往只需要给一个uri就能加载模型文件,并实现贴图渲染等。但是好的封装带来的问题是如果开发者想要自定义贴图,那该怎么办?不得不从源码入手。

二、价值

        这篇文章的价值不仅仅是gltf增加纹理贴图,因为刚才说到的3dtiles其实也是基于gltf来实现的模型,那么如果想给3dtiles增加自定义贴图,是否也意味着可以走gltf这条路,并且从gltf这层实现之后,是否意味着对b3dm/i3dm/cmpt等的统一。

三、源码解读

1.框架:

       3dtiels中b3dm和i3dm是以gltf为基础进行加载和渲染的,因此Cesium在封装的B3dmLoaderI3dmLoader中都有调用_gltfLoader的地方,其中使用的是:gltfLoader.process

B3dmLoader.prototype.process = function(frameState) {
    ...
    const ready = this._gltfLoader.process(frameState);
    ...
  };
I3dmLoader.prototype.process = function(frameState) {
    ...
      ready = gltfLoader.process(frameState);
    ...
  };

在这个函数中抛开异常处理逻辑,关键函数在于:loadResources5(this, frameState):

async function loadResources5(loader, frameState) {
    //给出Json指引
    const gltf = loader.gltfJson;
    //具体的资源加载
    const promise = parse(loader, gltf, supportedImageFormats, frameState);
    ...
    //注意这里由于模型资源加载完成后是不需要中间数据的,为了减少内存的消耗,Cesium这里对Json信息进行了清理
    if (defined_default(loader._gltfJsonLoader) && loader._releaseGltfJson) {
      ResourceCache_default.unload(loader._gltfJsonLoader);
      loader._gltfJsonLoader = void 0;
    }
    return promise;
  }

再来看parse:

function parse(loader, gltf, supportedImageFormats, frameState) {
    //...拓展项相关的数据处理
    //注意一下结构,实际就是按照Json的指引,将具体的数据请取出,熟悉gltf的Json项自然就明白了各项的含义
    const nodes = loadNodes(loader, gltf, supportedImageFormats, frameState);
    const skins = loadSkins(loader, gltf, nodes);
    const animations = loadAnimations(loader, gltf, nodes);
    const articulations = loadArticulations(gltf);
    const scene = loadScene(gltf, nodes);
    const components = new Components2();
    const asset = new Asset2();
    const copyright = gltf.asset.copyright;
    ...
    //将取出的数据存储在components中
    components.asset = asset;
    components.scene = scene;
    components.nodes = nodes;
    ...
    loader._components = components;
    ...
  }

至此,数据的读取,处理就完成了,意味着渲染隐含与其中。下面将重点分析。

2.渲染逻辑

A.纹理资源的加载

如果了解gltf的管理方式:

Cesium-源码修改-gltf增加纹理贴图改变3dtiles外观

不难看出node是总览全局的,那么进入 node处理部分:loadNodes::loadNode

function loadNode(loader, gltf, gltfNode, supportedImageFormats, frameState) {
   ...
    //一个node对应一个meshId,用于获取对应的mesh
    const meshId = gltfNode.mesh;
    if (defined_default(meshId)) {
      const mesh = gltf.meshes[meshId];
    //mesh中又包括多个图元
      const primitives = mesh.primitives;
      const primitivesLength = primitives.length;
      for (let i = 0; i < primitivesLength; ++i) {
        node.primitives.push(
        //图元是最小的渲染可调度单位
          loadPrimitive(
            loader,
            gltf,
            primitives[i],
            defined_default(node.instances),
            supportedImageFormats,
            frameState
          )
        );
      }
     ...
    }
    return node;
  }

在最小的渲染单位primitive中:

function loadPrimitive(loader, gltf, gltfPrimitive, hasInstances, supportedImageFormats, frameState) {
    ...
    //从图元取得MaterialId
    const materialId = gltfPrimitive.material;
    if (defined_default(materialId)) {
    //加载材质的入口,也意味着材质的管理(增删改)都可以从这里找到
      primitive.material = loadMaterial(
        loader,
        gltf,
        gltf.materials[materialId],
        supportedImageFormats,
        frameState
      );
    }
    ...
    return primitive;
  }

 加载材质部分主要包括:初始化一个空材质+往材质模板中填充数据

  function loadMaterial(loader, gltf, gltfMaterial, supportedImageFormats, frameState) {
    //首先进来的第一件事先创建一个空材质用于填充数据
    const material = new Material3();
    ...
    //直接计算的填充
    material.unlit = defined_default(extensions.KHR_materials_unlit);
...
    //针对特定类型材质特定参数计算,最后再填充
      specularGlossiness.glossinessFactor = pbrSpecularGlossiness.glossinessFactor;
      material.pbrSpecularGlossiness = pbrSpecularGlossiness;
    ...
        //重头戏就是这里的加载纹理
        metallicRoughness.baseColorTexture = loadTexture(
          loader,
          gltf,
          pbrMetallicRoughness.baseColorTexture,
          supportedImageFormats,
          frameState
        );
      ...
    return material;
  }

 加载纹理的逻辑:

function loadTexture(loader, gltf, textureInfo, supportedImageFormats, frameState, samplerOverride) {
    //检查Image是否可用
    //纹理加载器
    const textureLoader = ResourceCache_default.getTextureLoader({
      gltf,
      textureInfo,
      gltfResource: loader._gltfResource,
      baseResource: loader._baseResource,
      supportedImageFormats,
      frameState,
      asynchronous: loader._asynchronous
    });
    //纹理解释器
    const textureReader = GltfLoaderUtil_default.createModelTextureReader({
      textureInfo
    });
    //将相关加载放入总加载器管理
    loader._textureLoaders.push(textureLoader);
    ...
    loader._textureState = GltfLoaderState.FAILED;
    loader._textureErrors.push(error);
    loader._texturesPromises.push(promise);
    loader._textureCallbacks[index]...
    return textureReader;
  }

B.纹理资源应用 

当纹理加载完成,就要考虑如何消费纹理,即编写shader和处理:

纹理的使用往往是在FragmentShader中,这块的编码在Cesium中为:

var MaterialStageFS_default = "// If the style color is white, it implies the feature has not been styled.\nbool isDefaultStyleColor(vec3 color)\n{\n    return all(greaterThan(color, vec3(1.0 - czm_epsilon3)));\n}\n\nvec3 blend(vec3 sourceColor, vec3 styleColor, float styleColorBlend)\n{\n    vec3 blendColor = mix(sourceColor, styleColor, styleColorBlend);\n    vec3 color = isDefaultStyleColor(styleColor.rgb) ? sourceColor : blendColor;\n    return color;\n}\n\nvec2 computeTextureTransform(vec2 texCoord, mat3 textureTransform)\n{\n    return vec2(textureTransform * vec3(texCoord, 1.0));\n}\n\n#ifdef HAS_NORMALS\nvec3 computeNormal(ProcessedAttributes attributes)\n{\n    // Geometry normal. This is already normalized \n    vec3 ng = attributes.normalEC;\n\n    vec3 normal = ng;\n    #if defined(HAS_NORMAL_TEXTURE) && !defined(HAS_WIREFRAME)\n    vec2 normalTexCoords = TEXCOORD_NORMAL;\n        #ifdef HAS_NORMAL_TEXTURE_TRANSFORM\n        normalTexCoords = computeTextureTransform(normalTexCoords, u_normalTextureTransform);\n        #endif\n\n        // If HAS_BITANGENTS is set, then HAS_TANGENTS is also set\n        #ifdef HAS_BITANGENTS\n        vec3 t = attributes.tangentEC;\n        vec3 b = attributes.bitangentEC;\n        mat3 tbn = mat3(t, b, ng);\n        vec3 n = texture(u_normalTexture, normalTexCoords).rgb;\n        normal = normalize(tbn * (2.0 * n - 1.0));\n        #elif (__VERSION__ == 300 || defined(GL_OES_standard_derivatives))\n        // If derivatives are available (not IE 10), compute tangents\n        vec3 positionEC = attributes.positionEC;\n        vec3 pos_dx = dFdx(positionEC);\n        vec3 pos_dy = dFdy(positionEC);\n        vec3 tex_dx = dFdx(vec3(normalTexCoords,0.0));\n        vec3 tex_dy = dFdy(vec3(normalTexCoords,0.0));\n        vec3 t = (tex_dy.t * pos_dx - tex_dx.t * pos_dy) / (tex_dx.s * tex_dy.t - tex_dy.s * tex_dx.t);\n        t = normalize(t - ng * dot(ng, t));\n        vec3 b = normalize(cross(ng, t));\n        mat3 tbn = mat3(t, b, ng);\n        vec3 n = texture(u_normalTexture, normalTexCoords).rgb;\n        normal = normalize(tbn * (2.0 * n - 1.0));\n        #endif\n    #endif\n\n    #ifdef HAS_DOUBLE_SIDED_MATERIAL\n    if (czm_backFacing()) {\n        normal = -normal;\n    }\n    #endif\n\n    return normal;\n}\n#endif\n\nvoid materialStage(inout czm_modelMaterial material, ProcessedAttributes attributes, SelectedFeature feature)\n{\n    #ifdef HAS_NORMALS\n    material.normalEC = computeNormal(attributes);\n    #endif\n\n    vec4 baseColorWithAlpha = vec4(1.0);\n    // Regardless of whether we use PBR, set a base color\n    #ifdef HAS_BASE_COLOR_TEXTURE\n    vec2 baseColorTexCoords = TEXCOORD_BASE_COLOR;\n\n        #ifdef HAS_BASE_COLOR_TEXTURE_TRANSFORM\n        baseColorTexCoords = computeTextureTransform(baseColorTexCoords, u_baseColorTextureTransform);\n        #endif\n\n    baseColorWithAlpha = czm_srgbToLinear(texture(u_baseColorTexture, baseColorTexCoords));\n\n        #ifdef HAS_BASE_COLOR_FACTOR\n        baseColorWithAlpha *= u_baseColorFactor;\n        #endif\n    #elif defined(HAS_BASE_COLOR_FACTOR)\n    baseColorWithAlpha = u_baseColorFactor;\n    #endif\n\n    #ifdef HAS_POINT_CLOUD_COLOR_STYLE\n    baseColorWithAlpha = v_pointCloudColor;\n    #elif defined(HAS_COLOR_0)\n    vec4 color = attributes.color_0;\n        // .pnts files store colors in the sRGB color space\n        #ifdef HAS_SRGB_COLOR\n        color = czm_srgbToLinear(color);\n        #endif\n    baseColorWithAlpha *= color;\n    #endif\n\n    material.diffuse = baseColorWithAlpha.rgb;\n    material.alpha = baseColorWithAlpha.a;\n\n    #ifdef USE_CPU_STYLING\n    material.diffuse = blend(material.diffuse, feature.color.rgb, model_colorBlend);\n    #endif\n\n    #ifdef HAS_OCCLUSION_TEXTURE\n    vec2 occlusionTexCoords = TEXCOORD_OCCLUSION;\n        #ifdef HAS_OCCLUSION_TEXTURE_TRANSFORM\n        occlusionTexCoords = computeTextureTransform(occlusionTexCoords, u_occlusionTextureTransform);\n        #endif\n    material.occlusion = texture(u_occlusionTexture, occlusionTexCoords).r;\n    #endif\n\n    #ifdef HAS_EMISSIVE_TEXTURE\n    vec2 emissiveTexCoords = TEXCOORD_EMISSIVE;\n        #ifdef HAS_EMISSIVE_TEXTURE_TRANSFORM\n        emissiveTexCoords = computeTextureTransform(emissiveTexCoords, u_emissiveTextureTransform);\n        #endif\n\n    vec3 emissive = czm_srgbToLinear(texture(u_emissiveTexture, emissiveTexCoords).rgb);\n        #ifdef HAS_EMISSIVE_FACTOR\n        emissive *= u_emissiveFactor;\n        #endif\n    material.emissive = emissive;\n    #elif defined(HAS_EMISSIVE_FACTOR)\n    material.emissive = u_emissiveFactor;\n    #endif\n\n    #if defined(LIGHTING_PBR) && defined(USE_SPECULAR_GLOSSINESS)\n        #ifdef HAS_SPECULAR_GLOSSINESS_TEXTURE\n        vec2 specularGlossinessTexCoords = TEXCOORD_SPECULAR_GLOSSINESS;\n          #ifdef HAS_SPECULAR_GLOSSINESS_TEXTURE_TRANSFORM\n          specularGlossinessTexCoords = computeTextureTransform(specularGlossinessTexCoords, u_specularGlossinessTextureTransform);\n          #endif\n\n        vec4 specularGlossiness = czm_srgbToLinear(texture(u_specularGlossinessTexture, specularGlossinessTexCoords));\n        vec3 specular = specularGlossiness.rgb;\n        float glossiness = specularGlossiness.a;\n            #ifdef HAS_SPECULAR_FACTOR\n            specular *= u_specularFactor;\n            #endif\n\n            #ifdef HAS_GLOSSINESS_FACTOR\n            glossiness *= u_glossinessFactor;\n            #endif\n        #else\n            #ifdef HAS_SPECULAR_FACTOR\n            vec3 specular = clamp(u_specularFactor, vec3(0.0), vec3(1.0));\n            #else\n            vec3 specular = vec3(1.0);\n            #endif\n\n            #ifdef HAS_GLOSSINESS_FACTOR\n            float glossiness = clamp(u_glossinessFactor, 0.0, 1.0);\n            #else\n            float glossiness = 1.0;\n            #endif\n        #endif\n\n        #ifdef HAS_DIFFUSE_TEXTURE\n        vec2 diffuseTexCoords = TEXCOORD_DIFFUSE;\n            #ifdef HAS_DIFFUSE_TEXTURE_TRANSFORM\n            diffuseTexCoords = computeTextureTransform(diffuseTexCoords, u_diffuseTextureTransform);\n            #endif\n\n        vec4 diffuse = czm_srgbToLinear(texture(u_diffuseTexture, diffuseTexCoords));\n            #ifdef HAS_DIFFUSE_FACTOR\n            diffuse *= u_diffuseFactor;\n            #endif\n        #elif defined(HAS_DIFFUSE_FACTOR)\n        vec4 diffuse = clamp(u_diffuseFactor, vec4(0.0), vec4(1.0));\n        #else\n        vec4 diffuse = vec4(1.0);\n        #endif\n    czm_pbrParameters parameters = czm_pbrSpecularGlossinessMaterial(\n      diffuse.rgb,\n      specular,\n      glossiness\n    );\n    material.diffuse = parameters.diffuseColor;\n    // the specular glossiness extension's alpha overrides anything set\n    // by the base material.\n    material.alpha = diffuse.a;\n    material.specular = parameters.f0;\n    material.roughness = parameters.roughness;\n    #elif defined(LIGHTING_PBR)\n        #ifdef HAS_METALLIC_ROUGHNESS_TEXTURE\n        vec2 metallicRoughnessTexCoords = TEXCOORD_METALLIC_ROUGHNESS;\n            #ifdef HAS_METALLIC_ROUGHNESS_TEXTURE_TRANSFORM\n            metallicRoughnessTexCoords = computeTextureTransform(metallicRoughnessTexCoords, u_metallicRoughnessTextureTransform);\n            #endif\n\n        vec3 metallicRoughness = texture(u_metallicRoughnessTexture, metallicRoughnessTexCoords).rgb;\n        float metalness = clamp(metallicRoughness.b, 0.0, 1.0);\n        float roughness = clamp(metallicRoughness.g, 0.04, 1.0);\n            #ifdef HAS_METALLIC_FACTOR\n            metalness *= u_metallicFactor;\n            #endif\n\n            #ifdef HAS_ROUGHNESS_FACTOR\n            roughness *= u_roughnessFactor;\n            #endif\n        #else\n            #ifdef HAS_METALLIC_FACTOR\n            float metalness = clamp(u_metallicFactor, 0.0, 1.0);\n            #else\n            float metalness = 1.0;\n            #endif\n\n            #ifdef HAS_ROUGHNESS_FACTOR\n            float roughness = clamp(u_roughnessFactor, 0.04, 1.0);\n            #else\n            float roughness = 1.0;\n            #endif\n        #endif\n    czm_pbrParameters parameters = czm_pbrMetallicRoughnessMaterial(\n      material.diffuse,\n      metalness,\n      roughness\n    );\n    material.diffuse = parameters.diffuseColor;\n    material.specular = parameters.f0;\n    material.roughness = parameters.roughness;\n    #endif\n}\n";

 相当的长,但是这中间有上述分析过程中对材质单个参数(粗糙度,金属度)和纹理的处理,不妨一读。那么这段Shader如何使用的呢?

MaterialPipelineStage.process = function(renderResources, primitive, frameState) {
    ...
    processMaterialUniforms(
      material,
      uniformMap2,
      shaderBuilder,
      defaultTexture,
      defaultNormalTexture,
      defaultEmissiveTexture,
      disableTextures
    );
    if (defined_default(material.specularGlossiness)) {
      processSpecularGlossinessUniforms(
        material,
        uniformMap2,
        shaderBuilder,
        defaultTexture,
        disableTextures
      );
    } 
    else {
      processMetallicRoughnessUniforms(
        material,
        uniformMap2,
        shaderBuilder,
        defaultTexture,
        disableTextures
      );    
    }
    ...
    shaderBuilder.addFragmentLines(MaterialStageFS_default);
    ...
  };

 是的,直接在最下方添加到ShaderBuilder。

看上去我们这个过程从数据获取到消费似乎是完成了,但是细心的人应该发现了MaterialStageFS_default 还有一些宏或者不同的纹理它的采样器uv这样的数据其实也是要告知shader的,那么这种处理实际是在processGldLightMapUniforms::processTexture2这个函数中:

function processTexture2(shaderBuilder, uniformMap2, textureReader, uniformName, defineName, defaultTexture) {
//添加Uniform变量
    shaderBuilder.addUniform(
      "sampler2D",//类型
      uniformName,//变量名
      ShaderDestination_default.FRAGMENT//添加到Fragment
    );
    uniformMap2[uniformName] = function() {
      return defaultValue_default(textureReader.texture, defaultTexture);
    };
    //shaderBuilder.addDefine用于在Shader中定义变量并给初值
    //(名称,默认值,添加位置)
    const textureDefine = `HAS_${defineName}_TEXTURE`;//宏
    shaderBuilder.addDefine(textureDefine, void 0, ShaderDestination_default.FRAGMENT);
    
    const texCoordIndex = textureReader.texCoord;
    const texCoordVarying = `v_texCoord_${texCoordIndex}`;
    const texCoordDefine = `TEXCOORD_${defineName}`;
    //uv
    shaderBuilder.addDefine(
      texCoordDefine,
      texCoordVarying,
      ShaderDestination_default.FRAGMENT
    );
   ...
  }

至此,整个流程才算完成,理解了以上流程之后,要想加一张纹理那就比较容易了。

3.实操添加一张贴图

这里给出步骤思路,具体实现自己写一遍应该会好很多:

a.新增一张纹理贴图,意味着Material要加新成员,对应的是loadMaterial中的空材质构造函数:

const material = new Material3();

b. 对空material填充需要loadTexture,这里要注意纹理解释器的丰富,封装在了getAllTextureReaders中;

c.加载好纹理之后就是纹理处理,也就是shader部分,这里一共又可以分为两步:

      processTexture2添加uniform数据资源,往shader压入变量及其值;

      编写shader代码:MaterialStageFS_default。直接在这里改就可以利用上ShaderBuilder的添加一步到位。 文章来源地址https://www.toymoban.com/news/detail-460625.html

到了这里,关于Cesium-源码修改-gltf增加纹理贴图改变3dtiles外观的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • OpenGL —— 2.5、绘制第一个三角形(附源码,glfw+glad)(更新:纹理贴图)

    源码效果   C++源码        纹理图片            需下载stb_image.h这个解码图片的库,该库只有一个头文件。         具体代码:            vertexShader.glsl              fragmentShader.glsl              main.c      

    2024年02月11日
    浏览(50)
  • 第7节:cesium 3dtiles模型展示优化,平移、旋转、缩放...(含源码+视频)

    上一节,我们说明了如何加载3DTiles模型,这节我们主要说一下模型加载进来如何进行模型的展示优化。

    2024年02月13日
    浏览(47)
  • Cesium修改原始鼠标视图操作, 右键按住改变视角, 滚轮滚动进行zoom改变

    主要使用API为 screenSpaceCameraController

    2024年02月13日
    浏览(43)
  • gltf转3DTiles

    💡.下载转换程序 💡.下载安装python 💡.下载安装vscode 进入转换程序目录,进入cmd,执行pip install -r requirements.txt,自动安装相关依赖包。 💡.进入程序目录,用VSCode打开main.py文件,修改 fin 为需要转换的模型路径( 注意要有两个反斜杠! ) 💡.生成的模型在 转换模型 相同目录

    2024年02月16日
    浏览(33)
  • GLTF编辑器-位移贴图实现破碎的路面

    在线工具推荐: 3D数字孪生场景编辑器  -  GLTF/GLB材质纹理编辑器  -  3D模型在线转换  -  Three.js AI自动纹理开发包  -  YOLO 虚幻合成数据生成器  -  三维模型预览图生成器  -  3D模型语义搜索引擎 位移贴图是一种可以用于增加模型细节和形状的贴图。它能够在渲染时针对

    2024年02月03日
    浏览(44)
  • 【Filament】纹理贴图

    ​ 本文主要介绍使用 Filament 实现纹理贴图,读者如果对 Filament 不太熟悉,请回顾以下内容。 Filament环境搭建 绘制三角形 绘制矩形 绘制圆形 绘制立方体 ​ Filament 纹理坐标的 x、y 轴正方向分别朝右和朝上,其 y 轴正方向朝向与 OpenGL ES 和 libGDX 相反(详见【OpenGL ES】纹理贴

    2024年03月09日
    浏览(52)
  • 图片纹理贴图

    2024年01月19日
    浏览(40)
  • Three.js纹理贴图

    目录 Three.js入门 Three.js光源 Three.js阴影 Three.js纹理贴图 纹理是一种图像或图像数据,用于为物体的材质提供颜色、纹理、法线、位移等信息,从而实现更加逼真的渲染结果。 纹理可以应用于 Three.js 中的材质类型,如 MeshBasicMaterial 、 MeshLambertMaterial 、 MeshPhongMaterial 、 MeshSt

    2024年02月13日
    浏览(47)
  • 一文看懂-纹理/贴图/材质

    纹理(Texture) 应用于网格表面上的标准位图图像,即3D 对象的 2D 贴图。 贴图(Map) 指的是绘制在对象模型表面上的那些图像数据,其所使用的图像文件称为纹理。贴图还包含纹理图在对象表面的坐标(UV坐标)等其他数据信息。 可以说, 纹理是贴图的子集 。 另外。Map也

    2024年02月08日
    浏览(52)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包