基于MATLAB的MIMO信道估计(附完整代码与分析)

这篇具有很好参考价值的文章主要介绍了基于MATLAB的MIMO信道估计(附完整代码与分析)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

一. 介绍

二. MATLAB代码

三. 运行结果与分析

3.1 均方误差(MSE)与训练功率(dB)的关系

3.2 不同信道估计方法性能对比


一. 介绍

本篇将在MATLAB的仿真环境中对比MIMO几种常见的信道估计方法的性能。

有关MIMO的介绍可看转至此篇博客:

MIMO系统模型构建_唠嗑!的博客-CSDN博客

在所有无线通信中,信号通过信道会出现失真,或者会添加各种噪声。正确解码接收到的信号就需要消除信道施加的失真和噪声。为了弄清信道的特性,就需要信道估计。

信道估计有很多不同的方法,但是通用的流程可概括如下:

  1. 设置一个数学模型,利用信道矩阵搭建起发射信号和接收信号之间的关系;
  2. 发射已知信号(通常称为参考信号或导频信号)并检测接收到的信号;
  3. 通过对比发送信号和接收信号,确定信道矩阵中的每个元素。

二. MATLAB代码

一共有四个代码,包含三个函数代码和一个主运行代码。

主运行代码用来产生最后的图像

(1)main.m文件代码

%由于信道数据随机产生,每次运行出的图像可能有略微差异

%初始化
close all;
clear all;


%%设定仿真参数

rng('shuffle'); %产生随机化种子,也可以使用另一函数randn('state',sum(100*clock));


%设定蒙特卡洛仿真的数目
nbrOfMonteCarloRealizations = 1000;

nbrOfCouplingMatrices = 50; %相关矩阵数目

Nt = 8; %发射天线的数量,训练序列的长度
Nr = 4; %接收天线的数量

%训练的总功率
totalTrainingPower_dB = 0:1:20; %单位为dB
totalTrainingPower = 10.^(totalTrainingPower_dB/10); %转为线性范围

%最优化算法
option = optimset('Display','off','TolFun',1e-7,'TolCon',1e-7,'Algorithm','interior-point');


%比较不同的信道估计算法 
%使用蒙特卡洛仿真法
average_MSE_MMSE_estimator_optimal = zeros(length(totalTrainingPower),nbrOfCouplingMatrices,2); %最优训练下的MMSE估计法
average_MSE_MMSE_estimator_heuristic = zeros(length(totalTrainingPower),nbrOfCouplingMatrices,2); %启发训练下的MMSE估计法
average_MSE_MVU_estimator = zeros(length(totalTrainingPower),nbrOfCouplingMatrices,2); %最优训练下的MVU估计法
average_MSE_onesided_estimator = zeros(length(totalTrainingPower),nbrOfCouplingMatrices,2); %单边线性估计法 
average_MSE_twosided_estimator = zeros(length(totalTrainingPower),nbrOfCouplingMatrices,2); %双边线性估计法


%随机信道统计量下的迭代
for statisticsIndex = 1:nbrOfCouplingMatrices
    
    %产生Weichselberger模型下的耦合矩阵V
    %元素均来自卡方分布(自由度为2)
    V = abs(randn(Nr,Nt)+1i*randn(Nr,Nt)).^2;
    V = Nt*Nr*V/sum(V(:)); %将矩阵Frobenius范数设为 Nt x Nr.
    
    %计算耦合矩阵的协方差矩阵
    R = diag(V(:));
    
    R_T = diag(sum(V,1)); %在Weichselberger模型下,计算发射端的协方差矩阵
    R_R = diag(sum(V,2)); %在Weichselberger模型下,计算接收端的协方差矩阵
    
    
    %使用MATLAB内置自带的优化算法,计算MMSE估计法下最优的训练功率分配
    trainingpower_MMSE_optimal = zeros(Nt,length(totalTrainingPower)); %每个训练序列的功率分配向量
    
    for k = 1:length(totalTrainingPower) %遍历每个训练序列的功率分配
        trainingpower_initial = totalTrainingPower(k)*ones(Nt,1)/Nt; %初始设定功率均相等
        
        %使用fmincon函数来最优化功率分配
        %最小化MSE,所有功率均非负
        trainingpower_MMSE_optimal(:,k) = fmincon(@(q) functionMSEmatrix(R,q,Nr),trainingpower_initial,ones(1,Nt),totalTrainingPower(k),[],[],zeros(Nt,1),totalTrainingPower(k)*ones(Nt,1),[],option);
    end
    
    
    %计算功率分配
    [eigenvalues_sorted,permutationorder] = sort(diag(R_T),'descend'); %计算和整理特征值
    [~,inversePermutation] = sort(permutationorder); %记录特征值的order
    
    q_MMSE_heuristic = zeros(Nt,length(totalTrainingPower));
    for k = 1:length(totalTrainingPower) %遍历每个训练功率
        alpha_candidates = (totalTrainingPower(k)+cumsum(1./eigenvalues_sorted(1:Nt,1)))./(1:Nt)'; %计算拉格朗日乘子的不同值
        optimalIndex = find(alpha_candidates-1./eigenvalues_sorted(1:Nt,1)>0 & alpha_candidates-[1./eigenvalues_sorted(2:end,1); Inf]<0); %找到拉格朗日乘子的α
        q_MMSE_heuristic(:,k) = max([alpha_candidates(optimalIndex)-1./eigenvalues_sorted(1:Nt,1) zeros(Nt,1)],[],2); %使用最优的α计算功率分配
    end
    
    q_MMSE_heuristic = q_MMSE_heuristic(inversePermutation,:); %通过重新整理特征值来确定最终的功率分配
    
    
    %计算均匀功率分配
    q_uniform = (ones(Nt,1)/Nt)*totalTrainingPower;
    
    
    %蒙特卡洛仿真初始化
    vecH_realizations = sqrtm(R)*( randn(Nt*Nr,nbrOfMonteCarloRealizations)+1i*randn(Nt*Nr,nbrOfMonteCarloRealizations) ) / sqrt(2); %以向量的形式产生信道 
    vecN_realizations = ( randn(Nt*Nr,nbrOfMonteCarloRealizations)+1i*randn(Nt*Nr,nbrOfMonteCarloRealizations) ) / sqrt(2); %以向量的形式产生噪声
    
    
    %对于每种估计方法计算MSE和训练功率
    for k = 1:length(totalTrainingPower)
        
        %MMSE估计法:最优训练功率分配
        P_tilde = kron(diag(sqrt(trainingpower_MMSE_optimal(:,k))),eye(Nr)); %计算有效功率矩阵
        
        average_MSE_MMSE_estimator_optimal(k,statisticsIndex,1) = trace(R - (R*P_tilde'/(P_tilde*R*P_tilde' + eye(length(R))))*P_tilde*R); %计算MSE
        
        H_hat = (R*P_tilde'/(P_tilde*R*P_tilde'+eye(length(R)))) * (P_tilde*vecH_realizations+vecN_realizations); %使用蒙特卡洛仿真来计算该估计
        average_MSE_MMSE_estimator_optimal(k,statisticsIndex,2) = mean( sum(abs(vecH_realizations - H_hat).^2,1) ); %使用蒙特卡洛仿真来计算MSE
        
        
        %MMSE估计法:启发式训练功率分配MMSE 
        P_tilde = kron(diag(sqrt(q_MMSE_heuristic(:,k))),eye(Nr));  %计算有效训练矩阵
        
        average_MSE_MMSE_estimator_heuristic(k,statisticsIndex,1) = trace(R - (R*P_tilde'/(P_tilde*R*P_tilde' + eye(length(R))))*P_tilde*R); %计算MSE
        
        H_hat = (R*P_tilde'/(P_tilde*R*P_tilde'+eye(length(R)))) * (P_tilde*vecH_realizations + vecN_realizations); %使用蒙特卡洛仿真来计算该估计
        average_MSE_MMSE_estimator_heuristic(k,statisticsIndex,2) = mean( sum(abs(vecH_realizations - H_hat).^2,1) ); %使用蒙特卡洛仿真来计算MSE
        
        
        %MVY估计法: 最优均匀训练功率分配
        P_training = diag(sqrt(q_uniform(:,k))); %均匀功率分配
        P_tilde = kron(transpose(P_training),eye(Nr));  %计算有效训练矩阵
        P_tilde_pseudoInverse = kron((P_training'/(P_training*P_training'))',eye(Nr)); %计算有效训练矩阵的伪逆
        
        average_MSE_MVU_estimator(k,statisticsIndex,1) = Nt^2*Nr/totalTrainingPower(k); %计算MSE
        
        H_hat = P_tilde_pseudoInverse'*(P_tilde*vecH_realizations + vecN_realizations); %使用蒙特卡洛仿真来计算该估计
        average_MSE_MVU_estimator(k,statisticsIndex,2) = mean( sum(abs(vecH_realizations - H_hat).^2,1) ); %使用蒙特卡洛仿真来计算MSE
        
        
        %One-sided linear 估计法: 最优训练功率分配又被称为 "LMMSE 估计法" 
       
        
        P_training = diag(sqrt(q_MMSE_heuristic(:,k))); %使用最优功率分配来计算训练矩阵 
        P_tilde = kron(P_training,eye(Nr)); %计算有效训练矩阵
        
        average_MSE_onesided_estimator(k,statisticsIndex,1) = trace(inv(inv(R_T)+P_training*P_training'/Nr)); %计算MSE
        
        Ao = (P_training'*R_T*P_training + Nr*eye(Nt))\P_training'*R_T; %计算one-sided linear估计法中的矩阵A0 
        H_hat = kron(transpose(Ao),eye(Nr))*(P_tilde*vecH_realizations + vecN_realizations); %使用蒙特卡洛仿真来计算该估计
        average_MSE_onesided_estimator(k,statisticsIndex,2) = mean( sum(abs(vecH_realizations - H_hat).^2,1) );  %使用蒙特卡洛仿真来计算MS
        
        
        %Two-sided linear 估计法: 最优训练功率分配
        
        P_training = diag(sqrt(q_uniform(:,k))); %计算训练矩阵,均匀功率分配
        P_tilde = kron(P_training,eye(Nr)); %计算有效训练矩阵
        R_calE = sum(1./q_uniform(:,k))*eye(Nr); %计算协方差矩阵
        
        average_MSE_twosided_estimator(k,statisticsIndex,1) = trace(R_R-(R_R/(R_R+R_calE))*R_R); %计算MSE
        
        C1 = inv(P_training); %计算矩阵C1
        C2bar = R_R/(R_R+R_calE); %计算C2bar矩阵
        H_hat = kron(transpose(C1),C2bar)*(P_tilde*vecH_realizations + vecN_realizations);
        average_MSE_twosided_estimator(k,statisticsIndex,2) = mean( sum(abs(vecH_realizations - H_hat).^2,1) ); %使用蒙特卡洛仿真来计算MS
        
    end
    
end


%挑选训练功率的子集
subset = linspace(1,length(totalTrainingPower_dB),5);

normalizationFactor = Nt*Nr; %设定MSE标准化因子为trace(R), 标准化MSE为从0到1.


%使用理论MSE公式画图
figure(1); hold on; box on;

plot(totalTrainingPower_dB,mean(average_MSE_MVU_estimator(:,:,1),2)/normalizationFactor,'b:','LineWidth',2);

plot(totalTrainingPower_dB,mean(average_MSE_twosided_estimator(:,:,1),2)/normalizationFactor,'k-.','LineWidth',1);
plot(totalTrainingPower_dB,mean(average_MSE_onesided_estimator(:,:,1),2)/normalizationFactor,'r-','LineWidth',1);

plot(totalTrainingPower_dB(subset(1)),mean(average_MSE_MMSE_estimator_heuristic(subset(1),:,1),2)/normalizationFactor,'b+-.','LineWidth',1);
plot(totalTrainingPower_dB(subset(1)),mean(average_MSE_MMSE_estimator_optimal(subset(1),:,1),2)/normalizationFactor,'ko-','LineWidth',1);

legend('MVU, optimal','Two-sided linear, optimal','One-sided linear, optimal','MMSE, heuristic','MMSE, optimal','Location','SouthWest')

plot(totalTrainingPower_dB,mean(average_MSE_MMSE_estimator_heuristic(:,:,1),2)/normalizationFactor,'b-.','LineWidth',1);
plot(totalTrainingPower_dB,mean(average_MSE_MMSE_estimator_optimal(:,:,1),2)/normalizationFactor,'k-','LineWidth',1);
plot(totalTrainingPower_dB(subset),mean(average_MSE_MMSE_estimator_heuristic(subset,:,1),2)/normalizationFactor,'b+','LineWidth',1);
plot(totalTrainingPower_dB(subset),mean(average_MSE_MMSE_estimator_optimal(subset,:,1),2)/normalizationFactor,'ko','LineWidth',1);


set(gca,'YScale','Log'); %纵轴为log范围
xlabel('Total Training Power (dB)');
ylabel('Average Normalized MSE');
axis([0 totalTrainingPower_dB(end) 0.05 1]);

title('Results based on theoretical formulas');


%使用蒙特卡洛仿真画理论运算图
figure(2); hold on; box on;

plot(totalTrainingPower_dB,mean(average_MSE_MVU_estimator(:,:,2),2)/normalizationFactor,'b:','LineWidth',2);
plot(totalTrainingPower_dB,mean(average_MSE_twosided_estimator(:,:,2),2)/normalizationFactor,'k-.','LineWidth',1);
plot(totalTrainingPower_dB,mean(average_MSE_onesided_estimator(:,:,2),2)/normalizationFactor,'r-','LineWidth',1);
plot(totalTrainingPower_dB(subset(1)),mean(average_MSE_MMSE_estimator_heuristic(subset(1),:,2),2)/normalizationFactor,'b+-.','LineWidth',1);
plot(totalTrainingPower_dB(subset(1)),mean(average_MSE_MMSE_estimator_optimal(subset(1),:,2),2)/normalizationFactor,'ko-','LineWidth',1);

legend('MVU, optimal','Two-sided linear, optimal','One-sided linear, optimal','MMSE, heuristic','MMSE, optimal','Location','SouthWest')

plot(totalTrainingPower_dB,mean(average_MSE_MMSE_estimator_heuristic(:,:,2),2)/normalizationFactor,'b-.','LineWidth',1);
plot(totalTrainingPower_dB,mean(average_MSE_MMSE_estimator_optimal(:,:,2),2)/normalizationFactor,'k-','LineWidth',1);
plot(totalTrainingPower_dB(subset),mean(average_MSE_MMSE_estimator_heuristic(subset,:,2),2)/normalizationFactor,'b+','LineWidth',1);
plot(totalTrainingPower_dB(subset),mean(average_MSE_MMSE_estimator_optimal(subset,:,2),2)/normalizationFactor,'ko','LineWidth',1);


set(gca,'YScale','Log'); %纵轴为log范围
xlabel('Total Training Power (dB)');
ylabel('Average Normalized MSE');
axis([0 totalTrainingPower_dB(end) 0.05 1]);

title('Results based on Monte-Carlo simulations');

包含每行具体代码的解释

(2)三个函数文件

function [deviation,powerAllocation]=functionLagrangeMultiplier(eigenvaluesTransmitter,totalPower,k,alpha)
%Compute the MSE for estimation of the squared Frobenius norm of the
%channel matrix for a given training power allocation. 
%INPUT:
%eigenvaluesTransmitter = Vector with the active eigenvalues at the
%                         transmitter side
%totalPower             = Total power of the training sequence
%k                      = Vector with k parameter values 
%alpha                  = Langrange multiplier value
%
%OUTPUT:
%deviation              = Difference between available power and used power
%powerAllocation        = Training power allocation 
%Compute power allocation 
powerAllocation = sqrt(8*(1./alpha(:))*eigenvaluesTransmitter'/3).*cos(repmat((-1).^k*pi/3,[length(alpha) 1])-atan(sqrt(8*(1./alpha(:))*(eigenvaluesTransmitter.^3)'/27-1))/3)-repmat(1./eigenvaluesTransmitter',[length(alpha) 1]);

%Deviation between total available power and the power that is used
deviation = abs(totalPower-sum(powerAllocation,2));
function MSE = functionMSEmatrix(R_diag,q_powerallocation,B)
%Compute the MSE for estimation of the channel matrix for a given training
%power allocation. 
%INPUT:
%R_diag            = Nt Nr x Nt Nr diagonal covariance matrix
%q_powerallocation = Nt x 1 vector with training power allocation
%B                 = Length of the training sequence.
%
%OUTPUT:
%MSE               = Mean Squared Error for estimation of the channel matrix

P_tilde = kron(diag(sqrt(q_powerallocation)),eye(B));

MSE = trace(R_diag - R_diag*(P_tilde'/(P_tilde*R_diag*P_tilde'+eye(length(R_diag))))*P_tilde*R_diag);
function MSE = functionMSEnorm(eigenvaluesTransmitter,eigenvaluesReceiver,powerAllocation)
%Compute the MSE for estimation of the squared Frobenius norm of the
%channel matrix for a given training power allocation. 
%INPUT:
%eigenvaluesTransmitter = Nt x 1 vector with eigenvalues at the
%                         transmitter side
%eigenvaluesReceiver    = Nr x 1 vector with eigenvalues at the
%                         receiver side
%powerAllocation        = Nt x 1 vector with training power allocation
%
%OUTPUT:
%MSE               = Mean Squared Error for estimation of the squared norm

MSE = sum(sum(((eigenvaluesTransmitter*eigenvaluesReceiver').^2 + 2*(powerAllocation.*eigenvaluesTransmitter.^3)*(eigenvaluesReceiver').^3)./(1+(powerAllocation.*eigenvaluesTransmitter)*eigenvaluesReceiver').^2));

注意:

  • 此MIMO发射天线为8,接收天线为4;
  • 三个函数文件的命名需要与函数保持一致;
  • 先运行函数文件,再运行main主文件;
  • 函数文件出现变量数报错是正常现象;
  • 运行出来有两个图,选择任意一个图即可。

三. 运行结果与分析

基于MATLAB的MIMO信道估计(附完整代码与分析)

分析:

3.1 均方误差(MSE)与训练功率(dB)的关系

从图像上看,不管是何种信道估计方法,当训练功率增加时,均方误差(MSE)在减小。

MSE: Mean Square Error 均方误差

均方误差的全称为  误差平方的均值,误差也就是真实的信道值减去估计的信道值,我相信从名字来看就很好理解了,现在给出它的标准式子:

上式中E{}代表求里面的均值(数学期望),H代表信道准确值,代表信道估计值。

信道估计需要发送导频信号,训练功率越大证明投入的越多,信道估计的误差也就越小,信道估计性能越好,均方误差也就越小,这也就是解释了为什么所有的曲线均呈现递减的趋势。

3.2 不同信道估计方法性能对比

纵向对比,信道估计从最优到最劣分别为:MMSE(optimal),MMSE(heuristic),one-sided linear,two-side linear,MVU。

本图一共展现了五种MIMO信道估计的方法,要想搞清楚图形如此,就需要分析每一种信道估计方法。

(1)MVU,optimal

先从最差的开始。MVU全称 minimum variance unbiased 中文翻译为最小方差无偏。文章来源地址https://www.toymoban.com/news/detail-460775.html

到了这里,关于基于MATLAB的MIMO信道估计(附完整代码与分析)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 详解信道估计的发展与最新研究进展(MIMO)

    目录 一. MIMO信道估计的重要性 二. 最经典的两种信道估计方法 2.1 最小二乘信道估计(LS) 2.2 最小均方误差信道估计(MMSE)  三. 优化传统的MIMO信道估计技术 四. 介绍压缩感知技术 五. 基于压缩感知的MIMO信道估计 5.1 压缩感知怎么用在MIMO信道估计 5.2 改进压缩感知用在信道估计

    2023年04月09日
    浏览(29)
  • matlab代码--基于stbc编码的MIMO-OFDM系统的误码率分析

    空时分组编码STBC(Space Time Block Coding)用在无线通信中传输一个数据流的多个拷贝。通过许多天线来产生数据的多种接收版本,提高数据传输的可靠性。接收机接收到的数据拷贝中,存在一些比其它拷贝“更好”的拷贝。而这种冗余导致有更高机会使用一个或更多接收到数据

    2024年02月19日
    浏览(31)
  • 3D-MIMO信道模型的理论概述和matlab仿真

    目录 一、理论基础 二、核心程序 三、测试结果        信道模型的建模,其在不同场景中所对应的参数和分别都是不同的,因此,通过修改信道模型在角度域和延迟域[40]的特定的参数和分布,就可以获得不同的信道模型。        3D-MIMO(Three-Dimensional Multiple-Input Multiple-O

    2024年02月07日
    浏览(29)
  • 【MATLAB源码-第140期】基于matlab的深度学习的两用户NOMA-OFDM系统信道估计仿真,对比LS,MMSE,ML。

    深度学习技术在无线通信领域的应用越来越广泛,特别是在非正交多址接入(NOMA)和正交频分复用(OFDM)系统中,深度学习技术被用来提高信道估计的性能和效率。信道估计是无线通信系统中的关键技术之一,它直接影响着系统的通信质量和可靠性。本文将详细介绍深度学

    2024年02月20日
    浏览(33)
  • 【MATLAB源码-第38期】基于OFDM的块状导频和梳状导频误码率性能对比,以及LS/LMMSE两种信道估计方法以及不同调制方式对比。

    块状导频和梳状导频都是用于无线通信系统中信道估计的方法。 块状导频: 定义: 在频域上,块状导频是连续放置的一组导频符号。这意味着所有的导频符号都集中在一个短的时间段内发送。 优点: 对于时间选择性信道,块状导频可以提供准确的信道估计。 由于导频符号

    2024年04月09日
    浏览(36)
  • OFDM通信系统的LS信道估计均衡算法matlab仿真

    目录 一、理论基础 二、核心程序 三、仿真结论       OFDM主要思想是:将信道分成若干正交子信道,将高速数据信号转换成并行的低速子数据流,调制到在每个子信道上进行传输。正交信号可以通过在接收端采用相关技术来分开,这样可以减少子信道之间的相互干扰(ISI) 。

    2024年02月06日
    浏览(27)
  • 【MATLAB源码-第36期】matlab基于BD,SVD,ZF,MMSE,MF,SLNR预编码的MIMO系统误码率分析。

    1. MIMO (多输入多输出):这是一个无线通信系统中使用的技术,其中有多个发送和接收天线。通过同时发送和接收多个数据流,MIMO可以增加数据速率和系统容量,同时提高信号的可靠性。 2. BD (块对角化):这是一种MIMO预编码策略,用于消除多用户干扰。它的目标是使每个用户

    2024年04月15日
    浏览(23)
  • MATLAB | 频谱分析算法 | Welch功率谱密度估计 | 附数据和出图代码 | 直接上手

    有意向获取代码,请转文末观看代码获取方式~ Welch功率谱密度估计是一种基于信号分段平均的频谱估计方法,它可以对时域信号进行频谱分析,得到信号在不同频率上的能量分布。Welch功率谱密度估计在信号处理、通信、声学等领域得到广泛应用,相比于传统的频谱估计方法

    2024年04月16日
    浏览(30)
  • 【状态估计】基于随机方法优化PMU优化配置(Matlab代码实现)

    💥💥💞💞 欢迎来到本博客 ❤️❤️💥💥 🏆博主优势: 🌞🌞🌞 博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️ 座右铭: 行百里者,半于九十。 📋📋📋 本文目录如下: 🎁🎁🎁 目录 💥1 概述 📚2 运行结果 🎉3 文献来源 🌈4 Matlab代码、数据、文章

    2024年02月06日
    浏览(34)
  • 【状态估计】基于UKF法、AUKF法的电力系统三相状态估计研究(Matlab代码实现)

     💥💥💞💞 欢迎来到本博客 ❤️❤️💥💥 🏆博主优势: 🌞🌞🌞 博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️ 座右铭: 行百里者,半于九十。 📋📋📋 本文目录如下: 🎁🎁🎁 目录 💥1 概述 📚2 运行结果 🎉3 参考文献 🌈4 Matlab代码及数据 基于

    2024年02月17日
    浏览(39)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包