目录
一. 介绍
二. MATLAB代码
三. 运行结果与分析
3.1 均方误差(MSE)与训练功率(dB)的关系
3.2 不同信道估计方法性能对比
一. 介绍
本篇将在MATLAB的仿真环境中对比MIMO几种常见的信道估计方法的性能。
有关MIMO的介绍可看转至此篇博客:
MIMO系统模型构建_唠嗑!的博客-CSDN博客
在所有无线通信中,信号通过信道会出现失真,或者会添加各种噪声。正确解码接收到的信号就需要消除信道施加的失真和噪声。为了弄清信道的特性,就需要信道估计。
信道估计有很多不同的方法,但是通用的流程可概括如下:
- 设置一个数学模型,利用信道矩阵搭建起发射信号和接收信号之间的关系;
- 发射已知信号(通常称为参考信号或导频信号)并检测接收到的信号;
- 通过对比发送信号和接收信号,确定信道矩阵中的每个元素。
二. MATLAB代码
一共有四个代码,包含三个函数代码和一个主运行代码。
主运行代码用来产生最后的图像
(1)main.m文件代码
%由于信道数据随机产生,每次运行出的图像可能有略微差异
%初始化
close all;
clear all;
%%设定仿真参数
rng('shuffle'); %产生随机化种子,也可以使用另一函数randn('state',sum(100*clock));
%设定蒙特卡洛仿真的数目
nbrOfMonteCarloRealizations = 1000;
nbrOfCouplingMatrices = 50; %相关矩阵数目
Nt = 8; %发射天线的数量,训练序列的长度
Nr = 4; %接收天线的数量
%训练的总功率
totalTrainingPower_dB = 0:1:20; %单位为dB
totalTrainingPower = 10.^(totalTrainingPower_dB/10); %转为线性范围
%最优化算法
option = optimset('Display','off','TolFun',1e-7,'TolCon',1e-7,'Algorithm','interior-point');
%比较不同的信道估计算法
%使用蒙特卡洛仿真法
average_MSE_MMSE_estimator_optimal = zeros(length(totalTrainingPower),nbrOfCouplingMatrices,2); %最优训练下的MMSE估计法
average_MSE_MMSE_estimator_heuristic = zeros(length(totalTrainingPower),nbrOfCouplingMatrices,2); %启发训练下的MMSE估计法
average_MSE_MVU_estimator = zeros(length(totalTrainingPower),nbrOfCouplingMatrices,2); %最优训练下的MVU估计法
average_MSE_onesided_estimator = zeros(length(totalTrainingPower),nbrOfCouplingMatrices,2); %单边线性估计法
average_MSE_twosided_estimator = zeros(length(totalTrainingPower),nbrOfCouplingMatrices,2); %双边线性估计法
%随机信道统计量下的迭代
for statisticsIndex = 1:nbrOfCouplingMatrices
%产生Weichselberger模型下的耦合矩阵V
%元素均来自卡方分布(自由度为2)
V = abs(randn(Nr,Nt)+1i*randn(Nr,Nt)).^2;
V = Nt*Nr*V/sum(V(:)); %将矩阵Frobenius范数设为 Nt x Nr.
%计算耦合矩阵的协方差矩阵
R = diag(V(:));
R_T = diag(sum(V,1)); %在Weichselberger模型下,计算发射端的协方差矩阵
R_R = diag(sum(V,2)); %在Weichselberger模型下,计算接收端的协方差矩阵
%使用MATLAB内置自带的优化算法,计算MMSE估计法下最优的训练功率分配
trainingpower_MMSE_optimal = zeros(Nt,length(totalTrainingPower)); %每个训练序列的功率分配向量
for k = 1:length(totalTrainingPower) %遍历每个训练序列的功率分配
trainingpower_initial = totalTrainingPower(k)*ones(Nt,1)/Nt; %初始设定功率均相等
%使用fmincon函数来最优化功率分配
%最小化MSE,所有功率均非负
trainingpower_MMSE_optimal(:,k) = fmincon(@(q) functionMSEmatrix(R,q,Nr),trainingpower_initial,ones(1,Nt),totalTrainingPower(k),[],[],zeros(Nt,1),totalTrainingPower(k)*ones(Nt,1),[],option);
end
%计算功率分配
[eigenvalues_sorted,permutationorder] = sort(diag(R_T),'descend'); %计算和整理特征值
[~,inversePermutation] = sort(permutationorder); %记录特征值的order
q_MMSE_heuristic = zeros(Nt,length(totalTrainingPower));
for k = 1:length(totalTrainingPower) %遍历每个训练功率
alpha_candidates = (totalTrainingPower(k)+cumsum(1./eigenvalues_sorted(1:Nt,1)))./(1:Nt)'; %计算拉格朗日乘子的不同值
optimalIndex = find(alpha_candidates-1./eigenvalues_sorted(1:Nt,1)>0 & alpha_candidates-[1./eigenvalues_sorted(2:end,1); Inf]<0); %找到拉格朗日乘子的α
q_MMSE_heuristic(:,k) = max([alpha_candidates(optimalIndex)-1./eigenvalues_sorted(1:Nt,1) zeros(Nt,1)],[],2); %使用最优的α计算功率分配
end
q_MMSE_heuristic = q_MMSE_heuristic(inversePermutation,:); %通过重新整理特征值来确定最终的功率分配
%计算均匀功率分配
q_uniform = (ones(Nt,1)/Nt)*totalTrainingPower;
%蒙特卡洛仿真初始化
vecH_realizations = sqrtm(R)*( randn(Nt*Nr,nbrOfMonteCarloRealizations)+1i*randn(Nt*Nr,nbrOfMonteCarloRealizations) ) / sqrt(2); %以向量的形式产生信道
vecN_realizations = ( randn(Nt*Nr,nbrOfMonteCarloRealizations)+1i*randn(Nt*Nr,nbrOfMonteCarloRealizations) ) / sqrt(2); %以向量的形式产生噪声
%对于每种估计方法计算MSE和训练功率
for k = 1:length(totalTrainingPower)
%MMSE估计法:最优训练功率分配
P_tilde = kron(diag(sqrt(trainingpower_MMSE_optimal(:,k))),eye(Nr)); %计算有效功率矩阵
average_MSE_MMSE_estimator_optimal(k,statisticsIndex,1) = trace(R - (R*P_tilde'/(P_tilde*R*P_tilde' + eye(length(R))))*P_tilde*R); %计算MSE
H_hat = (R*P_tilde'/(P_tilde*R*P_tilde'+eye(length(R)))) * (P_tilde*vecH_realizations+vecN_realizations); %使用蒙特卡洛仿真来计算该估计
average_MSE_MMSE_estimator_optimal(k,statisticsIndex,2) = mean( sum(abs(vecH_realizations - H_hat).^2,1) ); %使用蒙特卡洛仿真来计算MSE
%MMSE估计法:启发式训练功率分配MMSE
P_tilde = kron(diag(sqrt(q_MMSE_heuristic(:,k))),eye(Nr)); %计算有效训练矩阵
average_MSE_MMSE_estimator_heuristic(k,statisticsIndex,1) = trace(R - (R*P_tilde'/(P_tilde*R*P_tilde' + eye(length(R))))*P_tilde*R); %计算MSE
H_hat = (R*P_tilde'/(P_tilde*R*P_tilde'+eye(length(R)))) * (P_tilde*vecH_realizations + vecN_realizations); %使用蒙特卡洛仿真来计算该估计
average_MSE_MMSE_estimator_heuristic(k,statisticsIndex,2) = mean( sum(abs(vecH_realizations - H_hat).^2,1) ); %使用蒙特卡洛仿真来计算MSE
%MVY估计法: 最优均匀训练功率分配
P_training = diag(sqrt(q_uniform(:,k))); %均匀功率分配
P_tilde = kron(transpose(P_training),eye(Nr)); %计算有效训练矩阵
P_tilde_pseudoInverse = kron((P_training'/(P_training*P_training'))',eye(Nr)); %计算有效训练矩阵的伪逆
average_MSE_MVU_estimator(k,statisticsIndex,1) = Nt^2*Nr/totalTrainingPower(k); %计算MSE
H_hat = P_tilde_pseudoInverse'*(P_tilde*vecH_realizations + vecN_realizations); %使用蒙特卡洛仿真来计算该估计
average_MSE_MVU_estimator(k,statisticsIndex,2) = mean( sum(abs(vecH_realizations - H_hat).^2,1) ); %使用蒙特卡洛仿真来计算MSE
%One-sided linear 估计法: 最优训练功率分配又被称为 "LMMSE 估计法"
P_training = diag(sqrt(q_MMSE_heuristic(:,k))); %使用最优功率分配来计算训练矩阵
P_tilde = kron(P_training,eye(Nr)); %计算有效训练矩阵
average_MSE_onesided_estimator(k,statisticsIndex,1) = trace(inv(inv(R_T)+P_training*P_training'/Nr)); %计算MSE
Ao = (P_training'*R_T*P_training + Nr*eye(Nt))\P_training'*R_T; %计算one-sided linear估计法中的矩阵A0
H_hat = kron(transpose(Ao),eye(Nr))*(P_tilde*vecH_realizations + vecN_realizations); %使用蒙特卡洛仿真来计算该估计
average_MSE_onesided_estimator(k,statisticsIndex,2) = mean( sum(abs(vecH_realizations - H_hat).^2,1) ); %使用蒙特卡洛仿真来计算MS
%Two-sided linear 估计法: 最优训练功率分配
P_training = diag(sqrt(q_uniform(:,k))); %计算训练矩阵,均匀功率分配
P_tilde = kron(P_training,eye(Nr)); %计算有效训练矩阵
R_calE = sum(1./q_uniform(:,k))*eye(Nr); %计算协方差矩阵
average_MSE_twosided_estimator(k,statisticsIndex,1) = trace(R_R-(R_R/(R_R+R_calE))*R_R); %计算MSE
C1 = inv(P_training); %计算矩阵C1
C2bar = R_R/(R_R+R_calE); %计算C2bar矩阵
H_hat = kron(transpose(C1),C2bar)*(P_tilde*vecH_realizations + vecN_realizations);
average_MSE_twosided_estimator(k,statisticsIndex,2) = mean( sum(abs(vecH_realizations - H_hat).^2,1) ); %使用蒙特卡洛仿真来计算MS
end
end
%挑选训练功率的子集
subset = linspace(1,length(totalTrainingPower_dB),5);
normalizationFactor = Nt*Nr; %设定MSE标准化因子为trace(R), 标准化MSE为从0到1.
%使用理论MSE公式画图
figure(1); hold on; box on;
plot(totalTrainingPower_dB,mean(average_MSE_MVU_estimator(:,:,1),2)/normalizationFactor,'b:','LineWidth',2);
plot(totalTrainingPower_dB,mean(average_MSE_twosided_estimator(:,:,1),2)/normalizationFactor,'k-.','LineWidth',1);
plot(totalTrainingPower_dB,mean(average_MSE_onesided_estimator(:,:,1),2)/normalizationFactor,'r-','LineWidth',1);
plot(totalTrainingPower_dB(subset(1)),mean(average_MSE_MMSE_estimator_heuristic(subset(1),:,1),2)/normalizationFactor,'b+-.','LineWidth',1);
plot(totalTrainingPower_dB(subset(1)),mean(average_MSE_MMSE_estimator_optimal(subset(1),:,1),2)/normalizationFactor,'ko-','LineWidth',1);
legend('MVU, optimal','Two-sided linear, optimal','One-sided linear, optimal','MMSE, heuristic','MMSE, optimal','Location','SouthWest')
plot(totalTrainingPower_dB,mean(average_MSE_MMSE_estimator_heuristic(:,:,1),2)/normalizationFactor,'b-.','LineWidth',1);
plot(totalTrainingPower_dB,mean(average_MSE_MMSE_estimator_optimal(:,:,1),2)/normalizationFactor,'k-','LineWidth',1);
plot(totalTrainingPower_dB(subset),mean(average_MSE_MMSE_estimator_heuristic(subset,:,1),2)/normalizationFactor,'b+','LineWidth',1);
plot(totalTrainingPower_dB(subset),mean(average_MSE_MMSE_estimator_optimal(subset,:,1),2)/normalizationFactor,'ko','LineWidth',1);
set(gca,'YScale','Log'); %纵轴为log范围
xlabel('Total Training Power (dB)');
ylabel('Average Normalized MSE');
axis([0 totalTrainingPower_dB(end) 0.05 1]);
title('Results based on theoretical formulas');
%使用蒙特卡洛仿真画理论运算图
figure(2); hold on; box on;
plot(totalTrainingPower_dB,mean(average_MSE_MVU_estimator(:,:,2),2)/normalizationFactor,'b:','LineWidth',2);
plot(totalTrainingPower_dB,mean(average_MSE_twosided_estimator(:,:,2),2)/normalizationFactor,'k-.','LineWidth',1);
plot(totalTrainingPower_dB,mean(average_MSE_onesided_estimator(:,:,2),2)/normalizationFactor,'r-','LineWidth',1);
plot(totalTrainingPower_dB(subset(1)),mean(average_MSE_MMSE_estimator_heuristic(subset(1),:,2),2)/normalizationFactor,'b+-.','LineWidth',1);
plot(totalTrainingPower_dB(subset(1)),mean(average_MSE_MMSE_estimator_optimal(subset(1),:,2),2)/normalizationFactor,'ko-','LineWidth',1);
legend('MVU, optimal','Two-sided linear, optimal','One-sided linear, optimal','MMSE, heuristic','MMSE, optimal','Location','SouthWest')
plot(totalTrainingPower_dB,mean(average_MSE_MMSE_estimator_heuristic(:,:,2),2)/normalizationFactor,'b-.','LineWidth',1);
plot(totalTrainingPower_dB,mean(average_MSE_MMSE_estimator_optimal(:,:,2),2)/normalizationFactor,'k-','LineWidth',1);
plot(totalTrainingPower_dB(subset),mean(average_MSE_MMSE_estimator_heuristic(subset,:,2),2)/normalizationFactor,'b+','LineWidth',1);
plot(totalTrainingPower_dB(subset),mean(average_MSE_MMSE_estimator_optimal(subset,:,2),2)/normalizationFactor,'ko','LineWidth',1);
set(gca,'YScale','Log'); %纵轴为log范围
xlabel('Total Training Power (dB)');
ylabel('Average Normalized MSE');
axis([0 totalTrainingPower_dB(end) 0.05 1]);
title('Results based on Monte-Carlo simulations');
包含每行具体代码的解释
(2)三个函数文件
function [deviation,powerAllocation]=functionLagrangeMultiplier(eigenvaluesTransmitter,totalPower,k,alpha)
%Compute the MSE for estimation of the squared Frobenius norm of the
%channel matrix for a given training power allocation.
%INPUT:
%eigenvaluesTransmitter = Vector with the active eigenvalues at the
% transmitter side
%totalPower = Total power of the training sequence
%k = Vector with k parameter values
%alpha = Langrange multiplier value
%
%OUTPUT:
%deviation = Difference between available power and used power
%powerAllocation = Training power allocation
%Compute power allocation
powerAllocation = sqrt(8*(1./alpha(:))*eigenvaluesTransmitter'/3).*cos(repmat((-1).^k*pi/3,[length(alpha) 1])-atan(sqrt(8*(1./alpha(:))*(eigenvaluesTransmitter.^3)'/27-1))/3)-repmat(1./eigenvaluesTransmitter',[length(alpha) 1]);
%Deviation between total available power and the power that is used
deviation = abs(totalPower-sum(powerAllocation,2));
function MSE = functionMSEmatrix(R_diag,q_powerallocation,B)
%Compute the MSE for estimation of the channel matrix for a given training
%power allocation.
%INPUT:
%R_diag = Nt Nr x Nt Nr diagonal covariance matrix
%q_powerallocation = Nt x 1 vector with training power allocation
%B = Length of the training sequence.
%
%OUTPUT:
%MSE = Mean Squared Error for estimation of the channel matrix
P_tilde = kron(diag(sqrt(q_powerallocation)),eye(B));
MSE = trace(R_diag - R_diag*(P_tilde'/(P_tilde*R_diag*P_tilde'+eye(length(R_diag))))*P_tilde*R_diag);
function MSE = functionMSEnorm(eigenvaluesTransmitter,eigenvaluesReceiver,powerAllocation)
%Compute the MSE for estimation of the squared Frobenius norm of the
%channel matrix for a given training power allocation.
%INPUT:
%eigenvaluesTransmitter = Nt x 1 vector with eigenvalues at the
% transmitter side
%eigenvaluesReceiver = Nr x 1 vector with eigenvalues at the
% receiver side
%powerAllocation = Nt x 1 vector with training power allocation
%
%OUTPUT:
%MSE = Mean Squared Error for estimation of the squared norm
MSE = sum(sum(((eigenvaluesTransmitter*eigenvaluesReceiver').^2 + 2*(powerAllocation.*eigenvaluesTransmitter.^3)*(eigenvaluesReceiver').^3)./(1+(powerAllocation.*eigenvaluesTransmitter)*eigenvaluesReceiver').^2));
注意:
- 此MIMO发射天线为8,接收天线为4;
- 三个函数文件的命名需要与函数保持一致;
- 先运行函数文件,再运行main主文件;
- 函数文件出现变量数报错是正常现象;
- 运行出来有两个图,选择任意一个图即可。
三. 运行结果与分析
分析:
3.1 均方误差(MSE)与训练功率(dB)的关系
从图像上看,不管是何种信道估计方法,当训练功率增加时,均方误差(MSE)在减小。
MSE: Mean Square Error 均方误差
均方误差的全称为 误差平方的均值,误差也就是真实的信道值减去估计的信道值,我相信从名字来看就很好理解了,现在给出它的标准式子:
上式中E{}代表求里面的均值(数学期望),H代表信道准确值,代表信道估计值。
信道估计需要发送导频信号,训练功率越大证明投入的越多,信道估计的误差也就越小,信道估计性能越好,均方误差也就越小,这也就是解释了为什么所有的曲线均呈现递减的趋势。
3.2 不同信道估计方法性能对比
纵向对比,信道估计从最优到最劣分别为:MMSE(optimal),MMSE(heuristic),one-sided linear,two-side linear,MVU。
本图一共展现了五种MIMO信道估计的方法,要想搞清楚图形如此,就需要分析每一种信道估计方法。
(1)MVU,optimal文章来源:https://www.toymoban.com/news/detail-460775.html
先从最差的开始。MVU全称 minimum variance unbiased 中文翻译为最小方差无偏。文章来源地址https://www.toymoban.com/news/detail-460775.html
到了这里,关于基于MATLAB的MIMO信道估计(附完整代码与分析)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!