数值分析A-实验作业1- 3.1
注:为了便于校验结果,本文为实验报告的补充
相关MATLAB函数提示
可能用到的MATLAB函数 | |
---|---|
zeros(m,n) | 生成m行,n列的零矩阵 |
ones(m,n) | 生成m行,n列的元素全为1的矩阵 |
eye(n) | 生成n阶单位矩阵 |
rand(m,n) | 生成m行,n列(0,1)上均匀分布的随机矩阵 |
diag(x) | 返回由向量x的元素构成的对角矩阵 |
tril(A) | 提取矩阵A的下三角部分生成下三角矩阵 |
tril(A) | 提取矩阵A的上三角部分生成上三角矩阵 |
rank(A) | 返回矩阵A的秩 |
det(A) | 返回方阵A的行列式 |
inv(A) | 返回可逆方阵A的逆矩阵 |
[V,D]=eig(A) | 返回方阵A的特征值和特征向量 |
norm(A,p) | 矩阵或向量A的p范数 |
cond(A,p) | 矩阵A的条件数 |
[L,U,P]=lu(A) | 选取列主元LU分解 |
R=chol(X) | 平方根分解 |
Hi=hilb(n) | 生成n阶Hilbert矩阵 |
实验 3.1(主元的选取与算法的稳定性)
问题提出:
Gauss 消去法是我们在线性代数中已经熟悉的,但由于计算机的数值运算是在一个有限的浮点数集合上进行的,如何才能确保 Gauss 消去法作为数值算法的稳定性呢? Grauss 消去法从理论算法到数值算法,其关键是主元的选择,主元的选择从数学理论上看起来平凡,它却是数值分析中十分典型的问题。
实验内容:
考虑线性方程组
A
x
=
b
,
A
∈
R
n
×
n
,
b
∈
R
n
Ax=b, A\in R^{n \times n},b \in R^n
Ax=b,A∈Rn×n,b∈Rn
编制一个能自动选取主元,又能手动选取主元的求解线性代数方程组的 Gauss 消去过程.
实验要求1.
取矩阵 A = [ 6 1 8 6 1 ⋱ ⋱ ⋱ 8 6 1 8 6 ] A=\begin{bmatrix} 6& 1 & & & \\ 8 & 6& 1& & \\ & \ddots& \ddots &\ddots & \\ & & 8& 6& 1\\ & & & 8&6 \end{bmatrix} A= 6816⋱1⋱8⋱6816 , b = [ 7 15 ⋮ 15 14 ] b=\begin{bmatrix} 7\\ 15\\ \vdots\\ 15\\ 14 \end{bmatrix} b= 715⋮1514 ,则方程有解 x ∗ = ( 1 , 1 , ⋯ , 1 ) T x^*=(1,1,\cdots,1)^T x∗=(1,1,⋯,1)T,取 n = 10 n=10 n=10 计算矩阵的条件数.让程序自动选取主元,结果如何?
解:
(1) 计算条件数
取 n = 10 n=10 n=10,计算矩阵A的条件数,
%----- code 计算条件数 -----
% --- 输入矩阵A和b ---
n = input(' 请输入n: ');
A = zeros(n,n);
b = zeros(n,1);
for i =1:n
A(i,i) = 6;
end
for i=1:n-1
A(i,i+1) = 1;
A(i+1,i) = 8;
end
b(1,1) = 7;
b(2:n-1,1) = 15;
b(n,1) = 14;
% --- 计算矩阵A的3种条件数 ---
disp('cond(A,1) ');
disp(cond(A,1));
disp('cond(A,2) ');
disp(cond(A,2));
disp('cond(A,inf) ');
disp(cond(A,inf));
得到:
c
o
n
d
(
A
)
1
=
2557.5
c
o
n
d
(
A
)
2
=
1727.55602491356
c
o
n
d
(
A
)
∞
=
2557.5
cond(A)_1=2557.5\\ cond(A)_2=1727.55602491356\\ cond(A)_\infty=2557.5
cond(A)1=2557.5cond(A)2=1727.55602491356cond(A)∞=2557.5
A
A
A的条件数很大,说明矩阵
A
A
A为病态矩阵,方程组
A
x
=
b
Ax=b
Ax=b为病态方程组,方程两端的微小扰动都可能对结果造成很大的误差。
(2)自动选取主元求解线性方程
输出说明: 使用format long 输出(16位有效数字),计算精度评价指标:$\left |x-x^* \right |_{\infty} $
-
顺序高斯消去法
%----- code 顺序Gauss消去 -----
%----- code 顺序Gauss消去 -----
%----- code 顺序Gauss消去 -----
clc %清除命令窗口的内容
clear all; %清除工作空间的所有变量,函数,和MEX文件
format long ; %设置输出显示格式为16位有效数字
%--------------------- 数值分析 实验3.1 主元的选取与算法的稳定性 ---------------------
%A 系数矩阵
%b 右端项
%n 阶数
%------------------------ 1. -------------------------
% --- --- --- --- --- ---输入矩阵A和b --- --- --- --- --- ---
n = input('Input n = ');
A = zeros(n,n);
b = zeros(n,1);
for i =1:n
A(i,i) = 6;
end
for i=1:n-1
A(i,i+1) = 1;
A(i+1,i) = 8;
end
b(1,1) = 7;
b(2:n-1,1) = 15;
b(n,1) = 14;
% --- --- --- --- --- --- --- --- --- ------ --- --- --- ---
% --- --- --- --- --- --- 求解 --- --- --- --- --- --- ---
disp('------- 精确解: ');
x = ones(n,1)
disp('------- 顺序高斯消元法解: ');
x0 = Gauss0(A,b)
disp('------- 误差 \left\| x-x^* \right\| _{\infty} : ');
norm(x-x0,inf)
% --- --- --- --- --- ---定义判断函数 --- --- --- --- --- ---
function r= iszero(a)
if(abs(a-0)<1e-10)
r=1;
disp('被除数为0,方程组无解 或有无穷解')
else
r=0;
end
end
% --- --- --- --- --- --- --- --- --- ------ --- --- --- ---
% --- --- --- --- --- ---定义顺序高斯消去函数 --- --- --- --- ---
function x = Gauss0(A,b)
%Gauss0为顺序高斯消去法
%A 系数矩阵
%b 右端项
n = size(A,1);
x = ones(n,1);
l = ones(n,1);
%消去过程
for k = 1:n-1
for i=k+1:n
if(iszero(A(k,k)))%如果A(k,k)=0则停机
return;
else
l(i) = A(i,k)/A(k,k);
b(i) = b(i) - l(i)*b(k);
for j =k:n
A(i,j) = A(i,j) - l(i)*A(k,j);
end
end
end
end
%回代过程
if(iszero(A(n,n)))%如果(A(n,n)=0则停机
return;
else
x(n) = b(n)/A(n,n);
end
for i=n-1:-1:1
w=0;
for j = i+1:n
w = w + A(i,j)*x(j);
end
x(i) = (b(i)-w)/A(i,i);
end
end
得到结果:
-
列主元消去法
%----- code 列主元Gauss消去 -----
%----- code 列主元Gauss消去 -----
%----- code 列主元Gauss消去 -----
clc %清除命令窗口的内容
clear all; %清除工作空间的所有变量,函数,和MEX文件
format long ; %设置输出显示格式为16位有效数字
%--------------------- 数值分析 实验3.1 主元的选取与算法的稳定性 ---------------------
%A 系数矩阵
%b 右端项
%n 阶数
%------------------------ 1. -------------------------
% --- --- --- --- --- ---输入矩阵A和b --- --- --- --- --- ---
n = input('Input n = ');
A = zeros(n,n);
b = zeros(n,1);
for i =1:n
A(i,i) = 6;
end
for i=1:n-1
A(i,i+1) = 1;
A(i+1,i) = 8;
end
b(1,1) = 7;
b(2:n-1,1) = 15;
b(n,1) = 14;
% --- --- --- --- --- --- --- --- --- ------ --- --- --- ---
% --- --- --- --- --- --- 求解 --- --- --- --- --- --- ---
disp('------- 精确解为x ------- ');
x = ones(n,1)
disp('------- 列主元Gauss消元法解为x1 -------');
x1 = Gauss1(A,b)
disp('------- 误差为 \left\| x-x^* \right\| _{\infty} -------');
norm(x-x1,inf)
% --- --- --- --- --- ---定义判断函数 --- --- --- --- --- ---
function r= iszero(a)
if(abs(a-0)<1e-10)
r=1;
disp('被除数为0,方程组无解 或有无穷解')
else
r=0;
end
end
% --- --- --- --- --- --- --- --- --- ------ --- --- --- ---
% --- --- --- --- --- ---定义列主元Gauss消去函数 --- --- --- --- ---
function x = Gauss1(A,b) %Gauss1为列主元高斯消去法
n = size(A,1);
x = zeros(n,1);
l = zeros(n,1);
%消去过程
for k = 1:n-1
%找列主元
MAX = max(abs(A(k:n,k)));%找到第k列,k到n行中绝对值最大的元素值
index = find((abs(A(k:n,k)))==MAX);%得到第k到n行中最大元素的行标
index = index+k-1;%转化为在矩阵A中的行标
%列主元交换
if abs(A(k,k)) ~= MAX %比index ~= k更好,因为可能有多个大小相同的最大值的情况
index=index(1);
A([k,index],:) = A([index,k],:);
b([k,index],:) = b([index,k],:);
end
%消去过程
for i=k+1:n
if(iszero(A(k,k)))%如果A(k,k)=0则停机
return;
else
l(i) = A(i,k)/A(k,k);
b(i) = b(i) - l(i)*b(k);
for j =k:n
A(i,j) = A(i,j) - l(i)*A(k,j);
end
end
end
end
%回代过程
if(iszero(A(n,n)))%如果(A(n,n)=0则停机
return;
else
x(n) = b(n)/A(n,n);
end
for i=n-1:-1:1
w=0;
for j = i+1:n
w = w + A(i,j)*x(j);
end
x(i) = (b(i)-w)/A(i,i);
end
end
得到结果:
-
完全选主元消去法
%----- code 完全选主元Gauss消去 -----
%----- code 完全选主元Gauss消去 -----
%----- code 完全选主元Gauss消去 -----
clc %清除命令窗口的内容
clear all; %清除工作空间的所有变量,函数,和MEX文件
format long ; %设置输出显示格式为16位有效数字
%--------------------- 数值分析 实验3.1 主元的选取与算法的稳定性 ---------------------
%A 系数矩阵
%b 右端项
%n 阶数
%------------------------ 1. -------------------------
% --- --- --- --- --- ---输入矩阵A和b --- --- --- --- --- ---
n = input('Input n = ');
A = zeros(n,n);
b = zeros(n,1);
for i =1:n
A(i,i) = 6;
end
for i=1:n-1
A(i,i+1) = 1;
A(i+1,i) = 8;
end
b(1,1) = 7;
b(2:n-1,1) = 15;
b(n,1) = 14;
% --- --- --- --- --- --- --- --- --- ------ --- --- --- ---
% --- --- --- --- --- --- 求解 --- --- --- --- --- --- ---
disp('------- 精确解为x ------- ');
x = ones(n,1)
disp('------- 完全选主元Gauss消元法解为2 -------');
x2 = Gauss2(A,b)
disp('------- 误差为 \left\| x-x^* \right\| _{\infty} -------');
norm(x-x2,inf)
% --- --- --- --- --- ---定义判断函数 --- --- --- --- --- ---
function r= iszero(a)
if(abs(a-0)<1e-10)
r=1;
disp('被除数为0,方程组无解 或有无穷解')
else
r=0;
end
end
% --- --- --- --- --- --- --- --- --- ------ --- --- --- ---
% --- --- --- --- --- ---定义完全选主元Gauss消去函数 --- --- --- --- ---
function x = Gauss2(A,b) %Gauss2为完全主元高斯消去法
n = size(A,1);
x = zeros(n,1);
%l为乘数
l = zeros(n,1);
%e为初等变换矩阵,用于列交换之后将最后的解x的位置更正
e = eye(n);
%迭代n-1次
for k = 1:n-1
%寻找最大主元
MAX1 = max(abs(A(k:n,k:n)));
MAX = max(MAX1);
[index1,index2] = find(abs(A(k:n,k:n))==MAX,1);
index1 = index1+k-1;
index2 = index2+k-1;
%交换行、列
if k ~= index1
A([k,index1],:) = A([index1,k],:);
b([k,index1],:) = b([index1,k],:);
end
if k ~= index2
A(:,[k,index2]) = A(:,[index2,k]);
e(:,[k,index2]) = e(:,[index2,k]);
end
for i=k+1:n
l(i) = A(i,k)/A(k,k);
b(i) = b(i) - l(i)*b(k);
for j =k:n
A(i,j) = A(i,j) - l(i)*A(k,j);
end
end
end
x(n) = b(n)/A(n,n);
for k=n-1:-1:1
w=0;
for j = k+1:n
w = w + A(k,j)*x(j);
end
x(k) = (b(k)-w)/A(k,k);
end
x=e*x;
end
得到结果
实验要求2.
现选择程序中手动选取主元的功能,每步消去过程总选取按模最小或按模尽可能小的元素作为主元,观察并记录计算结果.若每步消去过程总选取按模最大的元素作为主元,结果又如何?分析实验的结果.
(1)按模最小或按模尽可能小的元素作为主元
由完全选主元法就是按模最大的元素作为主元,若将取max换成取min,即按模最小或按模尽可能小的元素作为主元。因此对完全选主元函数myGauss2稍加修改,即可实现手动选取最小主元素。
同理,可以用程序模拟手动选取过程:迭代 k k k次时,在 [ a k k ( k ) ⋯ a k n ( k ) ⋮ ⋱ ⋮ a n k ( k ) ⋯ a n n ( k ) ] \begin{bmatrix} a_{kk}^{(k)} & \cdots &a_{kn}^{(k)}\\ \vdots & \ddots & \vdots \\ a_{nk}^{(k)} & \cdots &a_{nn}^{(k)} \end{bmatrix} akk(k)⋮ank(k)⋯⋱⋯akn(k)⋮ann(k) 中按模最小选取主元。文章来源:https://www.toymoban.com/news/detail-461862.html
%----- code 手动按模最小或尽可能小Gauss消去 -----
%----- code 手动按模最小或尽可能小Gauss消去 -----
%----- code 手动按模最小或尽可能小Gauss消去 -----
clc %清除命令窗口的内容
clear all; %清除工作空间的所有变量,函数,和MEX文件
format long ; %设置输出显示格式为16位有效数字
%--------------------- 数值分析 实验3.1 主元的选取与算法的稳定性 ---------------------
%A 系数矩阵
%b 右端项
%n 阶数
%------------------------ 实验要求(2) -------------------------
% --- --- --- --- --- ---输入矩阵A和b --- --- --- --- --- ---
n = input('Input n = ');
A = zeros(n,n);
b = zeros(n,1);
for i =1:n
A(i,i) = 6;
end
for i=1:n-1
A(i,i+1) = 1;
A(i+1,i) = 8;
end
b(1,1) = 7;
b(2:n-1,1) = 15;
b(n,1) = 14;
% --- --- --- --- --- --- --- --- --- ------ --- --- --- ---
% --- --- --- --- --- --- 求解 --- --- --- --- --- --- ---
disp('------- 精确解为x ------- ');
x = ones(n,1)
disp('------- 按模最小或尽可能小选取主元Gauss消元法解为x3 -------');
x3 = Gauss3(A,b)
disp('------- 误差为 \left\| x-x^* \right\| _{\infty} -------');
norm(x-x3,inf)
% --- --- --- --- --- ---定义判断函数 --- --- --- --- --- ---
function r= iszero(a)
if(abs(a-0)<1e-10)
r=1;
disp('被除数为0,方程组无解 或有无穷解')
else
r=0;
end
end
% --- --- --- --- --- --- --- --- --- ------ --- --- --- ---
% --- --- 定义 按模最小或尽可能小选取主元的Gauss消去 函数 --- --- ---
function x = Gauss3(A,b)
format long;
n = size(A,1);
x = zeros(n,1);
%l为乘数
l = zeros(n,1);
%e为初等变换矩阵,用于列交换之后将最后的解x的位置更正
e = eye(n);
%迭代n-1次
for k = 1:n-1
%按模最小或尽可能小选取主元
MIN = Inf;
for p=k:n
for q=k:n
if (abs(A(p,q))<MIN) && (abs(A(p,q))~=0)
MIN = abs(A(p,q));
index1 = p;
index2 = q;
else
index1 = k;
index2 = k;
end
end
end
%交换行、列
if k ~= index1
A([k,index1],:) = A([index1,k],:);
b([k,index1],:) = b([index1,k],:);
end
if k ~= index2
A(:,[k,index2]) = A(:,[index2,k]);
e(:,[k,index2]) = e(:,[index2,k]);
end
for i=k+1:n
l(i) = A(i,k)/A(k,k);
b(i) = b(i) - l(i)*b(k);
for j =k:n
A(i,j) = A(i,j) - l(i)*A(k,j);
end
end
end
x(n) = b(n)/A(n,n);
for k=n-1:-1:1
w=0;
for j = k+1:n
w = w + A(k,j)*x(j);
end
x(k) = (b(k)-w)/A(k,k);
end
x=e*x;
end
得到结果
(2)按模最大元素作为主元
分析可知,按模最大元素作为主元即完全选主元法,结果一致。文章来源地址https://www.toymoban.com/news/detail-461862.html
到了这里,关于数值分析A-实验作业1 - 3.1的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!