目录
前言
正文
1.主观概率
2.贝叶斯定理
1.基础知识
2.贝叶斯决策准则
3.极大后验假设
4.例题
2.朴素贝叶斯分类模型
朴素贝叶斯分类器的算法描述:
朴素贝叶斯算法特点
3.贝叶斯信念网
贝叶斯网络的建模包括两个步骤
贝叶斯信念网特点
前言
贝叶斯分类方法是统计学的分类方法,它利用概率统计知识预测给定元组属于特定类的概率。贝叶斯分类基于贝叶斯定理。最简单的贝叶斯分类算法称为朴素贝叶斯分类法。.
正文
1.主观概率
贝叶斯方法是一种研究不确定性的推理方法,不确定性常用贝叶斯概率表示,它是一种主观概率,是个人主观的估计,随个人的主观认识的变化而变化
对它的估计取决于先验知识的正确和后验知识的丰富和准确,因此贝叶斯概率常常可能随个人掌握信息的不同而发生变化,基于后验知识的一种判断,取决于对各种信息的掌握
2.贝叶斯定理
1.基础知识
已知事件A发生的条件下,事件B发生的概率,叫做事件B在事件A发生下的条件概率,记为 P(B|A) ,其中 P(A) 叫做先验概率, P(B|A) 叫做后验概率,计算条件概率的公式为:
后然=似然*先验 /证据因子
条件概率公式通过变形得到乘法公式:
设A,B为两个随机事件,如果有 P(AB) = P(A)P(B)成立,则称事件A和B相互独立。此时有 P(A|B) = P(A) 成立。
疾病诊断示例
两个诊断(检查)结论:患者有癌症(+);或者无癌症(-)
先验知识:所有人口中,患病率0.8%
有病患者确诊准确率98%,无病患者确诊准确率97%
P(cancer) = 0.008 P(!cancer) = 0.992
P(+|cancer) = 0.98 P(-|cancer) = 0.02
P(+|!cancer) = 0.03 P(-|!cancer) = 0.97
设 B1, B2,…, Bn 为互不相容事件,P(Bi)>0, i=1, 2,…, n,且 ,对任意的事件,计算事件A概率的公式为:
设P(A) >0,则在事件A发生的条件下,事件Bi发生的概率为:
,称该公式为贝叶斯公式
2.贝叶斯决策准则
如果对于任意 i ≠ j,都有P(Ci|X) > P(Cj|X) 成立,则样本模式 X 被判定为类别 Ci
3.极大后验假设
根据贝叶斯公式可得到一种计算后验概率的方法:在一定假设的条件下,根据先验概率和统计样本数据得到的概率,可以得到后验概率。
令P(c)是假设c的先验概率,它表示c是正确假设的概率,P(X) 表示的是训练样本X的先验概率,P(X|c) 表示在假设c正确的条件下样本X发生或出现的概率,根据贝叶斯公式可以得到后验概率的计算公式:
p设C为类别集合也就是待选假设集合,在给定未知类别标号样本X时,通过计算找到可能性最大的假设c∈C,具有最大可能性的假设或类别被称为极大后验假设(maximum a posteriori),记作 :
4.例题
假设当天的天气情况:X = { Sunny, Hot, High, Weak },判断今天是否可以打网球?
①统计个数
②计算先验概率
③计算后验概率(由于我们是判断当日是否出去打球,所以下面计算时,只计算上面一部分)
P(Yes | X) = P(Yes)*P(Sunny|Yes)*P(Hot|Yes)*P(High|Yes)P(Weak|Yes)
= 9/14 * 2/9 * 2/9 * 3/9 * 6/9 ≈ 0.0071
P(No | X) = P(No)*P(Sunny|No)*P(Hot|No)*P(High|No)P(Weak|No)
= 5/14 * 3/5 * 2/5 * 4/5 * 2/5 ≈ 0.0026
2.朴素贝叶斯分类模型
朴素贝叶斯分类模型:算法逻辑简单、运算速度快、分类耗时短、精度高
以属性的类条件独立性假设为前提,即在给定类别状态条件下,属性之间是相互独立的
朴素贝叶斯分类器的算法描述:
- 初始化:随机选择一个类别作为“先验概率”,通常设为0.5。这意味着在训练过程中,我们始终将样本分为两个类别:正例(或支持例,positive example)和负例(或拒绝例,negative example)。
- 计算后验概率:对于每个样本,我们需要计算其属于各个类别的后验概率。对于给定的样本,我们可以使用贝叶斯公式来计算其属于各个类别的后验概率:P(C|X) = (P(X|C) * P(C)) / P(X);其中,P(C|X) 是样本 X 在类别 C 下的后验概率,P(X|C) 是类别 C 下样本为正例的似然度,P(C) 是类别 C 的先验概率,P(X) 是样本 X 的边际概率。
- 选择最优类别:根据所有样本的后验概率,选择具有最高概率的类别作为最终预测结果。
需要注意的是,朴素贝叶斯分类器假设特征之间相互独立。在实际应用中,这种假设可能并不总是成立,因此需要对模型进行调整以适应特定的数据分布。此外,朴素贝叶斯分类器在处理缺失值和噪声数据时可能表现不佳。
朴素贝叶斯分类器的结构示意图
朴素贝叶斯算法特点
优点
逻辑简单、易实现、分类过程中时间空间开销比较小;
算法比较稳定、具有比较好的健壮性
缺点
有属性间类条件独立的这个假定,而很多实际问题中这个独立性假设并不成立,导致分类效果下降。
3.贝叶斯信念网
贝叶斯信念网络,简称贝叶斯网络,用图形表示一组随机变量之间的概率关系
贝叶斯网络有两个主要成分:文章来源:https://www.toymoban.com/news/detail-462097.html
- 一个有向无环图,表示变量之间的依赖关系
- 一个条件概率表,把各结点和它的直接父结点关联起来
在贝叶斯信念网中,每个结点还关联一个概率表。如果结点X没有父母结点,则表中只包含先验概率P(X),如果结点X只有一个父母结点Y,则表中包含条件概率P(X|Y),如果结点X有多个父母结点 {Y1, Y2,…, Yk} ,则表中包含条件概率 P(X|Y1, Y2,…, Yk) 文章来源地址https://www.toymoban.com/news/detail-462097.html
贝叶斯网络的建模包括两个步骤
- 创建网络结构
- 预估每一个结点在概率表中的概率值
贝叶斯信念网特点
- BBN提供了一种用图形模型来捕获特定领域的先验知识的方法;
- 网络结构确定,添加新变量就十分容易;
- 贝叶斯网络很适合处理不完整的数据;
- 对模型的过分拟合问题是非常鲁棒的。
到了这里,关于数据挖掘(5.1)--贝叶斯分类的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!