数学建模学习---非线性规划

这篇具有很好参考价值的文章主要介绍了数学建模学习---非线性规划。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

前言

一、非线性规划问题是什么?

二、非线性规划的数学模型

1.一般形式

三、线性规划的 Matlab 解法

Matlab 中非线性规划的数学模型:

2.Matlab 中的命令:



前言

本篇讲述非线性规划问题极其matlab解法


一、非线性规划问题是什么?

如果目标函数或约束条件中包含非线性函数,就称这种规划问题为非线性规划问题。一般说来,解非线性规划要比解线性规划问题困难得多。而且,也不像线性规划有单纯形法这一通用方法,非线性规划目前还没有适于各种问题的一般算法,各个方法都有自己特定的适用范围。
下面通过实例归纳出非线性规划数学模型的一般形式,介绍有关非线性规划的基本概念。

二、非线性规划的数学模型

1.一般形式

数学建模学习---非线性规划

其中 x = [ x 1 .... x n ] T 称为模型(NP)的决策变量
f 称为目标函数
g i ( i = 1,...., p ) 和 h j ( j = 1,....,q ) 称为约束函数
另外, g i ( x ) = 0 ( i = 1,...., p ) 称为等式约束
h j ( x ) 0 ( j = 1,....,q ) 称为不等式的约束

三、线性规划的 Matlab 解法

  1. Matlab 中非线性规划的数学模型:

数学建模学习---非线性规划

         

其中 f (x)是标量函数, A, B, Aeq, Beq是相应维数的矩阵和向量,C(x),Ceq(x) 是非

线性向量函数。

2.Matlab 中的命令:

[x,fval]=fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)

 x的返回值是决策向量x的取值

fval返回的是目标函数的取值,其中fun是用M文件定义的函数 ;

x0是x的初始值;

A,b,Aeq,beq定义了线性约束  如果没有线性约束,则A=[],b=[],Aeq=[],beq=[];lb和ub是变量x的下界和上界,如果上界和下界没有约束,即x无下界也无上界,则lb=[],ub=[],也可以写成 lb的各分量都为-inf,ub的各分量都为inf;

nonlcon是用M文件定义的非线性向量函数c(x),ceq(x);

options定义了优化参数,可以使用Matlab缺省的参数设置。

(看不懂没关系,后边的例题你会明白的)

3、例题1----二次规划问题

数学建模学习---非线性规划

clc
clear all
fun = @(x)100*(x(2)-x(1)^2)^2 + (1-x(1))^2;

x0 = [1,1];%初始点设置自行不同
A = [1,-2];
b = 1;
Aeq = [2,1];
beq = 1;
[x,y] = fmincon(fun,x0,A,b,Aeq,beq)

例题2---含非线性约束条件问题

目标函数

min f (x) = x1^2 + x2^2 + x3^2 + 8

约束条件
x1^2 − x2 + x3 ^2 ≥ 0
x1 + x2^2 + x3 ^3 ≤ 20
− x1 − x2^2 + 2 = 0
x2 + 2x3^2 = 3x1
x1,x2 , x3 ≥ 0
 

 解法

clc
clear all
%% 主函数
options=optimset('largescale','off');
[x,y] = fmincon(@fun,rand(3,1),[],[],[],[],zeros(3,1),[], @nonlcon, options)
 
%% 目标函数
function f=fun(x)
f=sum(x.^2)+8;
end
 
%% 非线性约束条件
function [c,ceq]=nonlcon(x)
c=[-x(1)^2+x(2)-x(3)^2
    x(1)+x(2)^2+x(3)^3-20];  %非线性不等式约束
ceq=[-x(1)-x(2)^2+2
   x(2)+2*x(3)^2-3]; %非线性等式约束
end

数学建模学习---非线性规划

 【源自http://t.csdn.cn/ijHZc】文章来源地址https://www.toymoban.com/news/detail-462288.html

到了这里,关于数学建模学习---非线性规划的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 数学建模| 非线性规划(Matlab)

    非线性规划:约束条件和目标函数存在非线性函数。简单点说,约束条件和目标函数中至少一个决策变量不是一次方,例如三角函数、对数、多次方等。 线性规划和非线性在解决上的不同:线性规划可以有通用方法,但是非线性规划的求解是没有特定算的,只能用近似的算法

    2024年02月07日
    浏览(49)
  • 三、数学建模之非线性规划

    1、定义 2、例题matlan代码求解 1.非线性规划 (Nonlinear Programming,简称NLP)是一种数学优化问题的方法,它处理的目标函数或约束条件包含非线性项。与线性规划不同,非线性规划涉及到在非线性约束下寻找最优解。在许多领域都有广泛的 应用,包括工程、经济学、物流、金

    2024年01月16日
    浏览(52)
  • 数学建模十大算法03—线性规划、整数规划、非线性规划、多目标规划

    一、线性规划(Linear Programming,LP) 1.1 引例 在人们的生产实践中,经常会遇到 如何利用现有资源来安排生产,以取得最大经济效益的问题。 此类问题构成了运筹学的一个重要分支一数学规划,而 线性规划(Linear Programming, LP) 则是数学规划的一个重要分支。 简而言之,线

    2024年02月13日
    浏览(46)
  • 数学建模__非线性规划Python实现

    线性规划指的是目标模型均为线性,除此以外的都是非线性规划,使用scipy提供的方法对该类问题进行求解。

    2024年02月07日
    浏览(51)
  • 【数学建模】Python+Gurobi求解非线性规划模型

    目录 1 概述 2 算例  2.1 算例 2.2 参数设置 2.3 Python代码实现 2.4 求解结果 如果目标函数或约束条件中包含非线性函数,就称这种规划问题为非线性规划问题。 参考:(非线性规划Python)计及动态约束及节能减排环保要求的经济调度 2.1 算例 2.2 参数设置 求解NLP/非凸问题时,

    2024年02月09日
    浏览(47)
  • 数学建模:线性与非线性优化算法

    🔆 文章首发于我的个人博客:欢迎大佬们来逛逛 优化算法 是指在满足一定条件下,在众多方案中或者参数中最优方案,或者参数值,以使得某个或者多个功能指标达到最优,或使得系统的某些性能指标达到最大值或者最小值 优化的两个关键点: 1.明确优化的目标函数 2.明确优化

    2024年02月07日
    浏览(43)
  • 数学模型:Python实现非线性规划

    上篇文章:整数规划 文章摘要:非线性规划的Python实现。 参考书籍:数学建模算法与应用(第3版)司守奎 孙玺菁。 PS:只涉及了具体实现并不涉及底层理论。学习底层理论以及底层理论实现:可以参考1.最优化模型与算法——基于Python实现 渐令 粱锡军2.算法导论(原书第3版)

    2024年02月08日
    浏览(55)
  • 高等工程数学 —— 第五章 (2)非线性规划的最优条件

    无约束规划问题的最优性条件 简单说就是先用一阶必要条件求驻点,再用二阶充分条件来验证。 其实就是一阶导数为0然后解未知量的值 这里的Hesse矩阵如下: 再简单说说判断矩阵是否正定的两种方法: 求出A的所有特征值。若A的特征值均为正数,则A是正定的;若A的特征值

    2024年02月03日
    浏览(43)
  • 数学建模——线性规划

    目录 基本概念 模型求解和应用 基于求解器的求解方法 基于问题的求解方法 其他  运筹学的一个重要分支是数学规划,线性规划是数学规划的一个重要的分支。 变量称为 决策变量 ,规划的目标称为 目标函数 ,限制条件称为 约束条件 ,s.t.是“受约束于”的意思。 建立线

    2024年01月18日
    浏览(45)
  • 【数学建模】线性规划

    1.1线性规划的实例与定义 1.2线性规划的Matlab标准形式 线性规划的目标函数可以是求最大值,也可以是求最小值,约束条件的不等号可以是小于号也可以是大于号。为了避免这种形式多样性带来的不便,Matlab中规定线性规划的标准形式为 其中c和x为n维列向量,A,Aeq为适当维数

    2024年02月09日
    浏览(44)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包