💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
📚2 运行结果
🎉3 文献来源
🌈4 Matlab代码、数据、文章讲解
💥1 概述
相量测量单元 (PMU) 收集高精度电压和电流数据,以监控电力系统的性能。但是,在电源系统内的每条总线上实施PMU的成本很高。最佳PMU放置(OPP)对于最大限度地减少实施的PMU数量同时保持网络的完全可观察性变得必要。本文考虑了优化PMU放置时总线连接的弹性。首先,开发图形和数学模型。接下来,采用机会约束规划的技术来创建考虑N-1偶然性的随机模型。最后,通过应用随机规划技术,使用IEEE 1996可靠性测试系统对模型进行测试。
文献来源:
https://ieeexplore.ieee.org/document/8973553
Optimal PMU Placement Using Stochastic Methods | IEEE Conference Publication | IEEE Xplore
📚2 运行结果
本文仅展现这两个部分。
部分代码:
user = input('Enter a value from 0 to 1: ');
if isempty(user)
user = 0.95;
disp('Default value used: 0.95');
disp(' ');
end
%iterations
disp('How many tests would you like to run? (For example: "100".)');
user2 = input('Enter a greater than 10: ');
if isempty(user2)
user2 = 50;
disp('Default value used: 50');
disp(' ');
end
%% STOCHASTIC:
tb = 73; %total number of buses
tzib = 40; %total number of zero-injection buses
tbc = 107; %total number of bus connections (120, considering the 12 doubles)
tzibc = 99; %total number of zero-injection bus connections
%load probability of branch failures
%duration data [2] has been divided by 8760 to get a percentage of annual time offline
🎉3 文献来源
部分理论来源于网络,如有侵权请联系删除。文章来源:https://www.toymoban.com/news/detail-462372.html
[1]M. Mandich, T. Xia and K. Sun, "Optimal PMU Placement Using Stochastic Methods," 2019 IEEE Power & Energy Society General Meeting (PESGM), Atlanta, GA, USA, 2019, pp. 1-5, doi: 10.1109/PESGM40551.2019.8973553.文章来源地址https://www.toymoban.com/news/detail-462372.html
🌈4 Matlab代码、数据、文章讲解
到了这里,关于【状态估计】基于随机方法优化PMU优化配置(Matlab代码实现)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!