目录
1、 实验题目
2、实验要求
(1)指令的地址按下述原则生成
(2)具体的实施方法
(3)将指令序列变换为页地址流
3、算法实现参考代码:
4、运行结果
5、算法比较
1、 实验题目
设计一个虚拟存储区和内存工作区,并使用下述算法计算访问命中率。
1、最佳淘汰算法(OPT)
2、先进先出的算法(FIFO)
3、最近最久未使用算法(LRU)
4、最不经常使用算法(LFU)
5、最近未使用算法(NUR)
命中率=1-(页面失效次数/页地址流长度)
2、实验要求
本实验的程序设计首先用srand( )和rand( )函数定义和产生指令序列,然后将指令序列变换成相应的页地址流,并针对不同的算法计算出相应的命中率。
(1)指令的地址按下述原则生成
通过随机数产生一个指令序列,共320条指令。
A:50%的指令是顺序执行的
B:25%的指令是均匀分布在前地址部分
C:25%的指令是均匀分布在后地址部分
(2)具体的实施方法
A:在[0,319]的指令地址之间随机选取一起点m
B:顺序执行一条指令,即执行地址为m+1的指令
C:在前地址[0,m+1]中随机选取一条指令并执行,该指令的地址为m’
D:顺序执行一条指令,其地址为m’+1
E:在后地址[m’+2,319]中随机选取一条指令并执行
F:重复步骤A-E,直到320次指令
(3)将指令序列变换为页地址流
设:页面大小为1K;
用户内存容量4页到32页;
用户虚存容量为32K。
在用户虚存中,按每K存放10条指令排列虚存地址,即320条指令在虚存中的存放方式为:
第 0 条-第 9 条指令为第0页(对应虚存地址为[0,9])
第10条-第19条指令为第1页(对应虚存地址为[10,19])
………………………………
第310条-第319条指令为第31页(对应虚存地址为[310,319])
按以上方式,用户指令可组成32页。
3、算法实现参考代码:
#define TRUE 1
#define FALSE 0
#define INVALID -1
#define NULL 0
#define total_instruction 320 /*指令流长*/
#define total_vp 32 /*虚页长*/
#define clear_period 50 /*清0周期*/
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
typedef struct /*页面结构*/
{
int pn,pfn,counter,time;
}pl_type;
pl_type pl[total_vp]; /*页面结构数组*/
struct pfc_struct{ /*页面控制结构*/
int pn,pfn;
struct pfc_struct *next;
};
typedef struct pfc_struct pfc_type;
pfc_type pfc[total_vp],*freepf_head,*busypf_head,*busypf_tail;
int diseffect, a[total_instruction];
int page[total_instruction], offset[total_instruction];
int initialize(int);
int FIFO(int);
int LRU(int);
int OPT(int);
int main( )
{
int s,i,j;
srand(10*getpid()); /*由于每次运行时进程号不同,故可用来作为初始化随机数队列的“种子”*/
s=(float)319*rand( )/32767/32767/2+1; //
for(i=0;i<total_instruction;i+=4) /*产生指令队列*/
{
if(s<0||s>319)
{
printf("When i==%d,Error,s==%d\n",i,s);
exit(0);
}
a[i]=s; /*任选一指令访问点m*/
a[i+1]=a[i]+1; /*顺序执行一条指令*/
a[i+2]=(float)a[i]*rand( )/32767/32767/2; /*执行前地址指令m' */
a[i+3]=a[i+2]+1; /*顺序执行一条指令*/
s=(float)(318-a[i+2])*rand( )/32767/32767/2+a[i+2]+2;
if((a[i+2]>318)||(s>319))
printf("a[%d+2],a number which is :%d and s==%d\n",i,a[i+2],s);
}
for (i=0;i<total_instruction;i++) /*将指令序列变换成页地址流*/
{
page[i]=a[i]/10;
offset[i]=a[i]%10;
}
for(i=4;i<=32;i++) /*用户内存工作区从4个页面到32个页面*/
{
printf("---%2d page frames---\n",i);
FIFO(i);
LRU(i);
OPT(i);
}
return 0;
}
int initialize(int total_pf) //初始化相关数据结构, int total_pf用户进程的内存页面数
{ int i;
diseffect=0;
for(i=0;i<total_vp;i++)
{
pl[i].pn=i;
pl[i].pfn=INVALID; /*置页面控制结构中的页号,页面为空*/
pl[i].counter=0;
pl[i].time=-1; /*页面控制结构中的访问次数为0,时间为-1*/
}
for(i=0;i<total_pf-1;i++)
{
pfc[i].next=&pfc[i+1];
pfc[i].pfn=i;
} /*建立pfc[i-1]和pfc[i]之间的链接*/
pfc[total_pf-1].next=NULL;
pfc[total_pf-1].pfn=total_pf-1;
freepf_head=&pfc[0]; /*空页面队列的头指针为pfc[0]*/
return 0;
}
int FIFO(int total_pf) /*先进先出算法*/
{
int i,j;
pfc_type *p;
initialize(total_pf); /*初始化相关页面控制用数据结构*/
busypf_head=busypf_tail=NULL; /*忙页面队列头,队列尾链接*/
for(i=0;i<total_instruction;i++)
{
if(pl[page[i]].pfn==INVALID) /*页面失效*/
{
diseffect+=1; /*失效次数*/
if(freepf_head==NULL) /*无空闲页面*/
{
p=busypf_head->next;
pl[busypf_head->pn].pfn=INVALID;
freepf_head=busypf_head; /*释放忙页面队列的第一个页面*/
freepf_head->next=NULL;
busypf_head=p;
}
p=freepf_head->next; /*按FIFO方式调新页面入内存页面*/
freepf_head->next=NULL;
freepf_head->pn=page[i];
pl[page[i]].pfn=freepf_head->pfn;
if(busypf_tail==NULL)
busypf_head=busypf_tail=freepf_head;
else
{
busypf_tail->next=freepf_head; /*free页面减少一个*/
busypf_tail=freepf_head;
}
freepf_head=p;
}
}
printf("FIFO:%6.4f\n",1-(float)diseffect/320);
return 0;
}
int LRU (int total_pf) /*最近最久未使用算法*/
{
int min,minj,i,j,present_time;
initialize(total_pf);
present_time=0;
for(i=0;i<total_instruction;i++)
{
if(pl[page[i]].pfn==INVALID) /*页面失效*/
{
diseffect++;
if(freepf_head==NULL) /*无空闲页面*/
{
min=32767;
for(j=0;j<total_vp;j++) /*找出time的最小值*/
if(min>pl[j].time&&pl[j].pfn!=INVALID)
{
min=pl[j].time;
minj=j;
}
freepf_head=&pfc[pl[minj].pfn]; //腾出一个单元
pl[minj].pfn=INVALID;
pl[minj].time=-1;
freepf_head->next=NULL;
}
pl[page[i]].pfn=freepf_head->pfn; //有空闲页面,改为有效
pl[page[i]].time=present_time;
freepf_head=freepf_head->next; //减少一个free 页面
}
else
pl[page[i]].time=present_time; //命中则增加该单元的访问次数
present_time++;
}
printf("LRU:%6.4f\n",1-(float)diseffect/320);
return 0;
}
int OPT(int total_pf) /*最佳置换算法*/
{int i,j, max,maxpage,d,dist[total_vp];
pfc_type *t;
initialize(total_pf);
for(i=0;i<total_instruction;i++)
{ //printf("In OPT for 1,i=%d\n",i); //i=86;i=176;206;250;220,221;192,193,194;258;274,275,276,277,278;
if(pl[page[i]].pfn==INVALID) /*页面失效*/
{
diseffect++;
if(freepf_head==NULL) /*无空闲页面*/
{for(j=0;j<total_vp;j++)
if(pl[j].pfn!=INVALID) dist[j]=32767; /* 最大"距离" */
else dist[j]=0;
d=1;
for(j=i+1;j<total_instruction;j++)
{
if(pl[page[j]].pfn!=INVALID)
dist[page[j]]=d;
d++;
}
max=-1;
for(j=0;j<total_vp;j++)
if(max<dist[j])
{
max=dist[j];
maxpage=j;
}
freepf_head=&pfc[pl[maxpage].pfn];
freepf_head->next=NULL;
pl[maxpage].pfn=INVALID;
}
pl[page[i]].pfn=freepf_head->pfn;
freepf_head=freepf_head->next;
}
}
printf("OPT:%6.4f\n",1-(float)diseffect/320);
return 0;
}
4、运行结果
5、算法比较
还有更多算法描述请跳转至:http://t.csdn.cn/diJvI
如有错误,敬请指正。文章来源:https://www.toymoban.com/news/detail-462631.html
您的收藏与点赞都是对我最大的鼓励和支持!文章来源地址https://www.toymoban.com/news/detail-462631.html
到了这里,关于Linux——页面置换算法(OPT、FIFO、LRU的实现与比较)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!