hugging face开源的transformers模型可快速搭建图片分类任务

这篇具有很好参考价值的文章主要介绍了hugging face开源的transformers模型可快速搭建图片分类任务。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

2017年,谷歌团队在论文「Attention Is All You Need」提出了创新模型,其应用于NLP领域架构Transformer模型。从模型发布至今,transformer模型风靡微软、谷歌、Meta等大型科技公司。且目前有模型大一统的趋势,现在transformer 模型不仅风靡整个NLP领域,且随着VIT SWIN等变体模型,成功把transformer 模型应用到计算机视觉任务。而目前最火的ChatGPT,也是基于Transformer开发的。

hugging face开源的transformers模型可快速搭建图片分类任务

Transformer 模型是一种用于自然语言处理的深度学习模型,它采用了注意力机制(attention is all you need)来处理输入序列,可以同时处理长序列信息,具有较好的并行性能,逐渐成为自然语言处理领域中的重要模型。虽然 Transformer 架构已成为自然语言处理任务的标准,但其在计算机视觉中的应用仍然有限。在视觉中,注意力要么与卷积网络结合使用,要么用于替换卷积网络的某些组件,同时保持其整体模型结构不变。

hugging face开源的transformers模型可快速搭建图片分类任务

为了把Transformer模型应用到计算机视觉任务上,且保持Transformer模型的整体构建,Google团队发布了VIT模型。Vision Transformer (ViT) 模型在 ImageNet-21k(1400 万张图像,21843 个类别&#文章来源地址https://www.toymoban.com/news/detail-462760.html

到了这里,关于hugging face开源的transformers模型可快速搭建图片分类任务的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 大规模 Transformer 模型 8 比特矩阵乘简介 - 基于 Hugging Face Transformers、Accelerate 以及 bitsandbytes

    语言模型一直在变大。截至撰写本文时,PaLM 有 5400 亿参数,OPT、GPT-3 和 BLOOM 有大约 1760 亿参数,而且我们仍在继续朝着更大的模型发展。下图总结了最近的一些语言模型的尺寸。 由于这些模型很大,因此它们很难在一般的设备上运行。举个例子,仅推理 BLOOM-176B 模型,你就

    2023年04月26日
    浏览(53)
  • Hugging Face 的文本生成和大语言模型的开源生态

    [更新于 2023 年 7 月 23 日: 添加 Llama 2。] 文本生成和对话技术已经出现多年了。早期的挑战在于通过设置参数和分辨偏差,同时控制好文本忠实性和多样性。更忠实的输出一般更缺少创造性,并且和原始训练数据更加接近,也更不像人话。最近的研究克服了这些困难,并且友

    2024年02月13日
    浏览(41)
  • 复旦MOSS大模型开源了「中国版ChatGPT」,Github和Hugging Face同时上线

    最近,ChatGPT非常火,从ChatGPT3到ChatGPT4,都非常火。无论是否为互联网行业的,多少都听到过关于ChatGPT的消息。虽然百度、阿里等互联网巨头都已经宣布将会推出相关的类ChatGPT产品。但目前还未有成型的产品上线。 而昨日,复旦团队发布国内首个类ChatGPT模型MOSS引发广泛关注

    2023年04月25日
    浏览(59)
  • 如何快速部署本地训练的 Bert-VITS2 语音模型到 Hugging Face

    Hugging Face是一个机器学习(ML)和数据科学平台和社区,帮助用户构建、部署和训练机器学习模型。它提供基础设施,用于在实时应用中演示、运行和部署人工智能(AI)。用户还可以浏览其他用户上传的模型和数据集。Hugging Face通常被称为机器学习界的GitHub,因为它让开发人

    2024年02月01日
    浏览(51)
  • 180B参数的Falcon登顶Hugging Face,vs chatGPT 最好开源大模型使用体验

    使用地址 https://huggingface.co/spaces/tiiuae/falcon-180b-demo 使用体验

    2024年02月09日
    浏览(43)
  • Hugging Face Transformers 萌新完全指南

    欢迎阅读《Hugging Face Transformers 萌新完全指南》,本指南面向那些意欲了解有关如何使用开源 ML 的基本知识的人群。我们的目标是揭开 Hugging Face Transformers 的神秘面纱及其工作原理,这么做不是为了把读者变成机器学习从业者,而是让为了让读者更好地理解 transformers 从而能

    2024年04月22日
    浏览(37)
  • 第3章 开源大模型框架概览3.2 PyTorch与Hugging Face3.2.3 PyTorch在大模型中的应用

    在过去的几年里,人工智能技术的发展取得了显著的进展,尤其是自然语言处理(NLP)和计算机视觉等领域。这些技术的核心驱动力是大型神经网络模型,如Transformer、GPT、BERT等。这些模型的训练和部署需要一些高效的深度学习框架来支持。PyTorch是一种流行的深度学习框架,

    2024年01月18日
    浏览(36)
  • Hugging News #0717: 开源大模型榜单更新、音频 Transformers 课程完成发布!

    每一周,我们的同事都会向社区的成员们发布一些关于 Hugging Face 相关的更新,包括我们的产品和平台更新、社区活动、学习资源和内容更新、开源库和模型更新等,我们将其称之为「Hugging News」。本期 Hugging News 有哪些有趣的消息,快来看看吧!🎉 😍 Hugging Face 🤗 开源大

    2024年02月16日
    浏览(48)
  • Hugging Face开源库accelerate详解

    官网:https://huggingface.co/docs/accelerate/package_reference/accelerator Accelerate使用步骤 初始化accelerate对象accelerator = Accelerator() 调用prepare方法对model、dataloader、optimizer、lr_schedluer进行预处理 删除掉代码中关于gpu的操作,比如.cuda()、.to(device)等,让accelerate自行判断硬件设备的分配 将l

    2024年02月16日
    浏览(35)
  • Hugging Face使用Stable diffusion Diffusers Transformers Accelerate Pipelines VAE

    A library that offers an implementation of various diffusion models, including text-to-image models. 提供不同扩散模型的实现的库,代码上最简洁,国内的问题是 huggingface 需要翻墙。 A Hugging Face library that provides pre-trained deep learning models for natural language processing tasks. 提供了预训练深度学习模型,

    2024年02月07日
    浏览(49)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包