数据偏度介绍和处理方法

这篇具有很好参考价值的文章主要介绍了数据偏度介绍和处理方法。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

偏度(skewness)是用来衡量概率分布或数据集中不对称程度的统计量。它描述了数据分布的尾部(tail)在平均值的哪一侧更重或更长。偏度可以帮助我们了解数据的偏斜性质,即数据相对于平均值的分布情况。

数据偏度介绍和处理方法

有时,正态分布倾向于向一边倾斜。这是因为数据大于或小于平均值的概率更高,因此使得分布不对称。这也意味着数据不是均匀分布的。

偏度可以与其他描述性统计一起描述变量的分布。通过偏度也可以判断变量是否为正态分布。因为正态分布的偏度为零,是许多统计过程的假设。

偏度分类

分布可以有右偏度(或正偏度)、左偏度(或负偏度)或零偏度。右偏态分布在其峰值的右侧较长,而左偏态分布在其峰值的左侧较长。

1、零偏度

—当一个分布的偏度为零时,它是对称的。它的左右两边是镜像。正态分布的偏度为零,但不是只有正态分布的偏度为零。任何对称分布,如均匀分布或某些双峰分布,偏度都是零。

检查变量是否具有倾斜分布的最简单方法是将其绘制成直方图。

数据偏度介绍和处理方法

分布近似对称,观测值在峰值的左右两侧分布相似。因此分布的偏度近似为零。

在零偏度的分布中,平均值和中位数是相等的,也就是说:

mean = median

2、右偏(正偏)

右偏分布在其峰值的右侧比其左侧更长。右偏也被称为正偏。它表明在分布的极端一端有观测值,但它们相对较少。右偏分布的右侧有一条长尾。

数据偏度介绍和处理方法

分布是右偏的,因为它在峰值右侧的时间更长。右偏分布的均值几乎总是大于中位数。这是因为极值(尾部的值)对均值的影响大于中位数。

mean > median

3、左偏(负偏)

左偏分布的峰值左侧比右侧更长。左偏分布的左侧有一条长尾。左偏也被称为负偏。

数据偏度介绍和处理方法

这个分布是左偏的,因为它在峰值的左侧更长。左偏分布的均值几乎总是小于中位数。

mean < median

偏度计算

有几个公式可以用来测量偏度。其中最简单的是皮尔逊中值偏度。它就是利用了上面我们说的偏态分布中均值和中位数不相等来计算的。

数据偏度介绍和处理方法

皮尔逊中位数偏度是计算均值和中位数之间有多少个标准差。

真实的观测很少有刚好为0的皮尔逊偏中值。因为如果数据的值接近于0,则可以认为它具有零偏度,但是在实际数据中很少有没有零偏度的分布数据。

例如,我们每年观测到的太阳黑子数量的Pearson中位数偏度:平均值= 48.6,中位数= 39,标准差= 39.5。那么公式如下:

数据偏度介绍和处理方法

如果该值介于:

·-0.5和0.5,值的分布几乎对称

·-1和-0.5之间为负偏斜,0.5到1之间为正偏斜。偏度适中。

·如果偏度小于-1(负偏)或大于1(正偏),则数据是高度偏斜。

如何处理有偏度数据

如果你的统计过程需要正态分布并且你的数据是倾斜的,你通常有三个选择:

  • 什么也不做:许多统计检验,包括t检验、方差分析和线性回归,对偏斜数据不太敏感。特别是如果偏斜是轻微或中度的,最好的办法就是忽略它。
  • 数据转换:通过对数据应用某种变换,可以调整数据的分布形状,使其更接近对称分布。常见的数据转换方法包括取对数、开方、平方根等。这些转换可以减小或消除数据的偏度。
  • 使用不同的模型:你可能想选择一个不假设正态分布的模型,非参数测试或广义线性模型可能更适合您的数据。比如说非参数方法:如果数据的偏度较大,而且无法通过简单的转换来纠正,可以考虑使用非参数统计方法。非参数方法不依赖于分布的假设,而是直接对数据进行分析,例如使用中位数作为代表性的位置测度,而不是平均值。
  • 分组分析:如果数据集中存在明显的子群体,可以考虑对数据进行分组分析。通过将数据分成多个子群体,并对每个子群体进行单独的分析,可以更好地了解数据的特征和偏度情况。
  • 针对特定问题采取相应的方法:根据具体的数据和分析目的,可以采用特定的方法来处理偏度数据。例如,在回归分析中,可以使用偏度稳定转换(skewness-stabilizing transformation)来调整数据的偏度,以满足回归模型的假设。

下表总结了一些常用数据变换:

数据偏度介绍和处理方法

总结

数据的偏度是用来衡量概率分布或数据集中不对称程度的统计量。它描述了数据分布的尾部在平均值的哪一侧更重或更长。通过计算偏度,可以更好地了解数据的分布特征,并在需要时采取适当的数据处理或分析方法。但是需要注意的是,偏度只是数据分布的一种度量,不能完全代表数据的整体特征,因此在分析数据时需要综合考虑其他统计指标和可视化方法。

https://avoid.overfit.cn/post/357fff159a5f41e68be87e56d6530726

作者:Dhaval Raval文章来源地址https://www.toymoban.com/news/detail-463281.html

到了这里,关于数据偏度介绍和处理方法的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【Docker】虚悬镜像(Dangling Image)介绍和处理方法

    虚悬镜像 (Dangling Image) 指的是仓库名 (镜像名) 和标签 TAG 都是 none 的镜像。如下图所示。 在实际开发中,在构建或者删除镜像时出错会有一定概率出现虚悬镜像。虚悬镜像在实际开发中产生概率不高,然而,一旦虚悬镜像生成,就可能对你的系统造成一些潜在的风险。因此,

    2024年02月06日
    浏览(39)
  • HTTP:http上传文件的原理及java处理方法的介绍

    为了说明原理,以下提供一个可以上传多个文件的例子,html页面代码如下:  显示效果如下:  通过点“浏览”选择要上传的文件,并分别输入保存时使用的文件名:  我们使用spring来处理上传的文件,代码如下:  为了能使以上代码正常运行,还要做一些配置。比如,如果

    2024年02月11日
    浏览(28)
  • FPGA图像处理的一些方法、原理和算法优缺点介绍

    目录 一、FPGA图像处理的基本原理 二、FPGA图像处理的方法 1. 图像滤波 2. 边缘检测 3. 图像分割 4. 图像增强 5. 图像目标提取算法 6. 注意事项 三、FPGA图像处理的应用 1. 医学影像 2. 工业检测 3. 安防监控 四、总结 注意:后续技术分享,第一时间更新,以及更多更及时的技术资

    2024年02月15日
    浏览(47)
  • Golang 中的反射,并用来获取数据类型

    Go语言提供了一种机制在运行中获取某个变量的类型,获取或修改变量的值,调用变量的方法。 示例代码如下 通过 reflect.Value 判断变量类型,并转换成 string 。 输出结果: 输出结果:

    2024年01月22日
    浏览(53)
  • 医学影像PACS系统源码: 三维重建基本后处理方法的介绍和说明

    多层面重建(MPR) 最大密度投影(MIP) 最小密度投影(MinIP) 表面阴影遮盖(SSD) 容积漫游技术(VRT) 曲面重建(CPR) 虚拟内镜技术(VE)   1、MPR MPR(Multi-Planar Reformatting),多平面重建,是将扫描范围内所有的轴位图像叠加起来再对某些标线标定的重组线所指定的组织进行

    2024年02月09日
    浏览(57)
  • 【Linux】关于OOM(Out of Memory)相关的介绍及处理方法

    OOM(Out-of-Memory)机制是内核的一部分,用于处理内存消耗过度的情况。OOM机制的责任是选择一个或多个高内存消耗的进程,并终止它们以释放内存。 在Linux中,进程的OOM Score决定了在出现内存不足的情况下,进程是最可能被终止的。OOM Score越高的进程被终止的可能性也就越大

    2024年02月07日
    浏览(85)
  • 【大数据】什么是Flink?Flink能用来做什么?

    Apache Flink 是一个框架和分布式处理引擎,用于在无边界和有边界数据流上进行有状态的计算。Flink 能在所有常见集群环境中运行,并能以内存速度和任意规模进行计算。 Apache Flink 功能强大,支持开发和运行多种不同种类的应用程序。它的主要特性包括:批流一体化、精密的

    2024年02月04日
    浏览(46)
  • 【Python实例】netCDF数据介绍及处理

    NetCDF(network Common Data Form)网络通用数据格式是由美国大学大气研究协会(University Corporation for Atmospheric Research,UCAR)的Unidata项目科学家针对科学数据的特点开发的,是一种面向数组型并适于网络的数据的描述和编码标准。 NetCDF官方介绍 netcdf4-python官方文档 NetCDF文件后缀一般为

    2024年02月05日
    浏览(80)
  • SPSS计算极值、平均值、中位数、方差、偏度、峰度、变异系数

      本文介绍基于 SPSS 软件的 经典统计学分析 与 偏度 、 峰度 等常用统计学指标的计算方法。   首先需要说明,本文所述数据的 经典统计学分析 ,包括计算数据的 极值、平均值、中位数、标准差、方差、变异系数、偏度与峰度 等常用统计学指标。   首先,打开 SP

    2024年02月03日
    浏览(67)
  • 凯斯西储大学轴承数据介绍及处理

           轴承故障诊断一般使用美国凯斯西储大学的数据集进行标准化检测算法的优劣。以下几种实验数据提取和使用方法为我在论文中所看到的。进行以下陈述        实验数据采用美国凯斯西储大学的SKF型轴承的 DE(drive end accelerometer data 驱动端加速度数据) 端加速度数

    2024年01月20日
    浏览(44)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包