深度学习一点通:PyTorch Transformer 预测股票价格,虚拟数据,chatGPT同源模型

这篇具有很好参考价值的文章主要介绍了深度学习一点通:PyTorch Transformer 预测股票价格,虚拟数据,chatGPT同源模型。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

预测股票价格是一项具有挑战性的任务,已引起研究人员和从业者的广泛关注。随着深度学习技术的出现,已经提出了许多模型来解决这个问题。其中一个模型是 Transformer,它在许多自然语言处理任务中取得了最先进的结果。在这篇博文中,我们将向您介绍一个示例,该示例使用 PyTorch Transformer 根据前 10 天预测未来 5 天的股票价格。

首先,让我们导入必要的库:

import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np

产生训练模型的数据

对于这个例子,我们将生成一些虚拟股票价格数据:

num_days = 200
stock_prices = np.random.rand(num_days) * 100

预处理数据

我们将为我们的模型准备输入和目标序列:

input_seq_len = 10
output_seq_len = 5
num_samples = num_days - input_seq_len - output_seq_len + 1

src_data = torch.tensor([stock_prices[i:i+input_seq_len] for i in range(num_samples)]).unsqueeze(-1).float()
tgt_data = torch.tensor([stock_prices[i+input_seq_len:i+input_seq_len+output_seq_len] for i in range(num_samples)]).unsqueeze(-1).float()

创建自定义转换器模型

我们将创建一个用于股票价格预测的自定义 Transformer 模型:

class StockPriceTransformer(nn.Module):
    def __init__(self, d_model, nhead, num_layers, dropout):
        super(StockPriceTransformer, self).__init__()
        self.input_linear = nn.Linear(1, d_model)
        self.transformer = nn.Transformer(d_model, nhead, num_layers, dropout=dropout)
        self.output_linear = nn.Linear(d_model, 1)

    def forward(self, src, tgt):
        src = self.input_linear(src)
        tgt = self.input_linear(tgt)
        output = self.transformer(src, tgt)
        output = self.output_linear(output)
        return output

d_model = 64
nhead = 4
num_layers = 2
dropout = 0.1

model = StockPriceTransformer(d_model, nhead, num_layers, dropout=dropout)

训练模型

我们将设置训练参数、损失函数和优化器:

epochs = 100
lr = 0.001
batch_size = 16

criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=lr)

现在,我们将使用训练循环训练模型:

for epoch in range(epochs):
    for i in range(0, num_samples, batch_size):
        src_batch = src_data[i:i+batch_size].transpose(0, 1)
        tgt_batch = tgt_data[i:i+batch_size].transpose(0, 1)
        
        optimizer.zero_grad()
        output = model(src_batch, tgt_batch[:-1])
        loss = criterion(output, tgt_batch[1:])
        loss.backward()
        optimizer.step()

    print(f"Epoch {epoch+1}/{epochs}, Loss: {loss.item()}")

预测未来 5 天的股票价格

最后,我们将使用经过训练的模型预测未来 5 天的股票价格:

src = torch.tensor(stock_prices[-input_seq_len:]).unsqueeze(-1).unsqueeze(1).float()
tgt = torch.zeros(output_seq_len, 1, 1)

with torch.no_grad():
    for i in range(output_seq_len):
        prediction = model(src, tgt[:i+1])
        tgt[i] = prediction[-1]

output = tgt.squeeze().tolist()
print("Next 5 days of stock prices:", output)

在这个预测循环中,我们使用自回归解码方法 ( model(src, tgt[:i+1])) 逐步生成输出序列,因为每一步的输出都取决于之前的输出。

结论

在这篇博文中,我们演示了如何使用 PyTorch Transformer 模型预测股票价格。我们生成虚拟股价数据,对其进行预处理,创建自定义 Transformer 模型,训练模型,并预测未来 5 天的股价。此示例可作为使用深度学习技术开发更复杂的股票价格预测模型的起点。

代码下载

见链接底部

AI好书推荐

AI日新月异,但是万丈高楼拔地起,离不开良好的基础。您是否有兴趣了解人工智能的原理和实践? 不要再观望! 我们关于 AI 原则和实践的书是任何想要深入了解 AI 世界的人的完美资源。 由该领域的领先专家撰写,这本综合指南涵盖了从机器学习的基础知识到构建智能系统的高级技术的所有内容。 无论您是初学者还是经验丰富的 AI 从业者,本书都能满足您的需求。 那为什么还要等呢?

人工智能原理与实践 全面涵盖人工智能和数据科学各个重要体系经典

北大出版社,人工智能原理与实践 人工智能和数据科学从入门到精通 详解机器学习深度学习算法原理 文章来源地址https://www.toymoban.com/news/detail-463430.html

到了这里,关于深度学习一点通:PyTorch Transformer 预测股票价格,虚拟数据,chatGPT同源模型的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【深度学习 | Transformer】Transformers 教程:pipeline一键预测

    Transformers 是用于自然语言处理 (NLP)、计算机视觉以及音频和语音处理任务的预训练最先进模型库。该库不仅包含 Transformer 模型,还包含非 Transformer 模型,例如用于计算机视觉任务的现代卷积网络。 pipeline() 可以加载多个模型让进行推理变得简单,即使没有使用特定模态的经

    2024年02月05日
    浏览(38)
  • 《动手学深度学习 Pytorch版》 10.7 Transformer

    自注意力同时具有并行计算和最短的最大路径长度这两个优势。Transformer 模型完全基于注意力机制,没有任何卷积层或循环神经网络层。尽管 Transformer 最初是应用于在文本数据上的序列到序列学习,但现在已经推广到各种现代的深度学习中,例如语言、视觉、语音和强化学习

    2024年02月08日
    浏览(48)
  • 第53步 深度学习图像识别:Bottleneck Transformer建模(Pytorch)

    一、写在前面 (1)Bottleneck Transformer \\\"Bottleneck Transformer\\\"(简称 \\\"BotNet\\\")是一种深度学习模型,在2021年由Google的研究人员在论文\\\"Bottleneck Transformers for Visual Recognition\\\"中提出。 BotNet的核心思想是 将Transformer模型的自注意力机制(Self-Attention Mechanism)引入到了ResNet模型的瓶颈结构

    2024年02月16日
    浏览(37)
  • PyTorch深度学习实战 | 基于深度学习的电影票房预测研究

    基于深度学习的映前票房预测模型(CrossDense网络结构模型),该模型通过影片基本信息如:电影类型、影片制式、档期和电影的主创阵容和IP特征等信息对上映影片的票房进行预测。 本篇采用451部电影作为训练模型,最后再在194部影片上进行测试,模型的绝对精度为55%,相对精

    2023年04月24日
    浏览(39)
  • 基于深度学习的乳腺癌淋巴结转移预测模型(E-Transformer)

    乳腺癌细胞淋巴结转移是界定乳腺癌早中期的重要标准 ,需要活检,患者体验较差。 传统的图像辅助诊断需要手动提取特征、组合图像特征,效率低下、效果不佳。新兴的基于深度学习的图像辅助诊断,利用卷积神经网络通过全连接层或机器学习自动分割病灶、提取图像特

    2024年04月17日
    浏览(38)
  • 深度学习实战24-人工智能(Pytorch)搭建transformer模型,真正跑通transformer模型,深刻了解transformer的架构

    大家好,我是微学AI,今天给大家讲述一下人工智能(Pytorch)搭建transformer模型,手动搭建transformer模型,我们知道transformer模型是相对复杂的模型,它是一种利用自注意力机制进行序列建模的深度学习模型。相较于 RNN 和 CNN,transformer 模型更高效、更容易并行化,广泛应用于神

    2023年04月22日
    浏览(58)
  • PyTorch深度学习实战 | 预测工资——线性回归

    通过员工工作年限与工资的对应关系表,找出二者之间的关系,并预测在指定的年限时,工资会有多少。 通过员工工作年限与工资的对应关系表,找出二者之间的关系,并预测在指定的年限时,工资会有多少。 可以看出,这是一个用工作年限预

    2023年04月11日
    浏览(45)
  • PyTorch深度学习实战 | 基于多层感知机模型和随机森林模型的某地房价预测

    简介: 在现实生活中,除了分类问题外,也存在很多需要预测出具体值的回归问题,例如年龄预测、房价预测、股价预测等。相比分类问题而言,回归问题输出类型为一个连续值,如下表所示为两者的区别。在本文中,将完成房价预测这一回归问题。 ■ 分类问题与回归问题

    2023年04月12日
    浏览(49)
  • Transformer预测 | Pytorch实现基于Transformer的锂电池寿命预测(NASA数据集)

    效果一览 文章概述 Pytorch实现基于Transformer 的锂电池寿命预测,环境为pytorch 1.8.0,pandas 0.24.2 随着充放电次数的增加,锂电池的性能逐渐下降。电池的性能可以用容量来表示,故寿命预测 (RUL) 可以定义如下: SOH(t)=CtC0×100%, 其中,C0 表示额定容量,Ct 表示 t 时刻的容量。等到

    2024年02月07日
    浏览(60)
  • 【ONNX】使用 C++ 调用 ONNX 格式的 PyTorch 深度学习模型进行预测(Windows, C++, PyTorch, ONNX, Visual Studio, OpenCV)

    要使用 ONNX 模型进行预测,就需要使用 onnx runtime 首先到 ONNX 官网查询所需的版本 这里使用的 Windows,同时装了 CUDA 下面的链接可以进入到安装网址 https://www.nuget.org/packages/Microsoft.ML.OnnxRuntime.Gpu 安装命令为: 首先打开 Visual Studio 2019 新建一个用于测试的项目 右键点击项目,可

    2024年02月09日
    浏览(55)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包