数组的玩法比我以为的要多

这篇具有很好参考价值的文章主要介绍了数组的玩法比我以为的要多。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

数组的玩法比我以为的要多

数组是最基本的数据结构,关于数组的面试题也屡见不鲜,本文罗列了一些常见的面试题,仅供参考。目前有以下18道题目。

  • 数组求和

  • 求数组的最大值和最小值

  • 求数组的最大值和次大值

  • 求数组中出现次数超过一半的元素

  • 求数组中元素的最短距离

  • 求两个有序数组的共同元素

  • 求三个数组的共同元素

  • 找出数组中唯一的重复元素

  • 找出出现奇数次的元素

  • 求数组中满足给定和的数对

  • 最大子段和

  • 最大子段积

  • 数组循环移位

  • 字符串逆序

  • 组合问题

  • 合并两个数组

  • 重排问题

  • 找出绝对值最小的元素

数组求和

给定一个含有n个元素的整型数组a,求a中所有元素的和。可能您会觉得很简单,是的,的确简单,但是为什么还要说呢,原因有二,第一,这道题要求用递归法,只用一行代码。第二,这是我人生中第一次面试时候遇到的题,意义特殊。

分析

简单说一下,两种情况

  1. 如果数组元素个数为0,那么和为0。

  2. 如果数组元素个数为n,那么先求出前n - 1个元素之和,再加上a[n - 1]即可

代码

// 数组求和
int sum(int*a, int n)
{
   return n == 0 ? 0 : sum(a, n -1) + a[n -1];
}

 

求数组的最大值和最小值

给定一个含有n个元素的整型数组a,找出其中的最大值和最小值

分析

常规的做法是遍历一次,分别求出最大值和最小值,但我这里要说的是分治法(Divide and couquer),将数组分成左右两部分,先求出左半部份的最大值和最小值,再求出右半部份的最大值和最小值,然后综合起来求总体的最大值及最小值。

这是个递归过程,对于划分后的左右两部分,同样重复这个过程,直到划分区间内只剩一个元素或者两个元素。

代码

// 求数组的最大值和最小值,返回值在maxValue和minValue
void MaxandMin(int *a, int l, int r, int& maxValue, int& minValue)
{
    if(l == r) // l与r之间只有一个元素
    {
        maxValue = a[l] ;
        minValue = a[l] ;
        return ;
    }

    if(l + 1 == r) // l与r之间只有两个元素
    {
        if(a[l] >= a[r])
        {
            maxValue = a[l] ;
            minValue = a[r] ;
        }
        else
        {
            maxValue = a[r] ;
            minValue = a[l] ;
        }
        return ;
    }

    int m = (l + r) / 2 ; // 求中点

    int lmax ; // 左半部份最大值
    int lmin ; // 左半部份最小值
    MaxandMin(a, l, m, lmax, lmin) ; // 递归计算左半部份

    int rmax ; // 右半部份最大值
    int rmin ; // 右半部份最小值
    MaxandMin(a, m + 1, r, rmax, rmin) ; // 递归计算右半部份

    maxValue = max(lmax, rmax) ; // 总的最大值
    minValue = min(lmin, rmin) ; // 总的最小值
}

 

求数组的最大值和次大值

给定一个含有n个元素的整型数组,求其最大值和次大值

分析

思想和上一题类似,同样是用分治法,先求出左边的最大值leftmax和次大值leftsecond,再求出右边的最大值rightmax和次大值rightsecond,然后合并,如何合并呢?分情况考虑

  1. 如果leftmax > rightmax,那么可以肯定leftmax是最大值,但次大值不一定是rightmax,但肯定不是rightsecond,只需将leftsecond与rightmax做一次比较即可。

  2. 如果rightmax > leftmax,那么可以肯定rightmax是最大值,但次大值不一定是leftmax,但肯定不是leftsecond,所以只需将leftmax与rightsecond做一次比较即可。

注意

这种方法无法处理最大元素有多个的情况,比如3,5,7,7将返回7,7而不是7,5。

代码

// 找出数组的最大值和次大值,a是待查找的数组,left和right是查找区间,max和second存放结果
void MaxandMin(int a[], int left, int right, int&max, int&second)
{
    if(left == right)
    {
        max = a[left] ;
        second =  INT_MIN;
    }
    elseif(left +1== right)
    {
        max = a[left] > a[right] ? a[left] : a[right] ;
        second = a[left] < a[right] ? a[left] : a[right] ;
    }
    else
    {
        int mid = left + (right - left) /2 ;

        int leftmax ;
        int leftsecond ;
        MaxandMin(a, left, mid, leftmax, leftsecond) ;

        int rightmax ;
        int rightsecond ;
        MaxandMin(a, mid +1, right, rightmax, rightsecond) ;

        if (leftmax > rightmax)
        {
            max = leftmax ;
            second = leftsecond > rightmax ? leftsecond : rightmax ;
        }
        else
        {
            max = rightmax ;
            second = leftmax < rightsecond ? rightsecond : leftmax ;
        }
    }
}

 

求数组中出现次数超过一半的元素

给定一个n个整型元素的数组a,其中有一个元素出现次数超过n / 2,求这个元素。据说是百度的一道题

分析

设置一个当前值和当前值的计数器,初始化当前值为数组首元素,计数器值为1,然后从第二个元素开始遍历整个数组,对于每个被遍历到的值a[i]

  1. 如果a[i]==currentValue,则计数器值加1

  2. 如果a[i] != currentValue, 则计数器值减1,如果计数器值小于0,则更新当前值为a[i],并将计数器值重置为1

代码

// 找出数组中出现次数超过一半的元素
int Find(int* a, int n)
{
    int curValue = a[0] ;
    int count = 1 ;

    for (int i = 1; i < n; ++i)
    {
        if (a[i] == curValue)
            count++ ;
        else
        {
            count-- ;
            if (count < 0)
            {
                curValue = a[i] ;
                count = 1 ;
            }
        }
    }

    return curValue ;
}

 

另一个方法是先对数组排序,然后取中间元素即可,因为如果某个元素的个数超过一半,那么数组排序后该元素必定占据数组的中间位置。

求数组中元素的最短距离

给定一个含有n个元素的整型数组,找出数组中的两个元素x和y使得abs(x - y)值最小

分析

先对数组排序,然后遍历一次即可

代码

int compare(const void* a, const void* b)
{
    return *(int*)a - *(int*)b ;
}

// 求数组中元素的最短距离
void MinimumDistance(int* a, int n)
{
    // Sort
    qsort(a, n, sizeof(int), compare) ;

    int i ; // Index of number 1
    int j ; // Index of number 2

    int minDistance = numeric_limits<int>::max() ;
    for (int k = 0; k < n - 1; ++k)
    {
        if (a[k + 1] - a[k] < minDistance)
        {
            minDistance = a[k + 1] - a[k] ;
            i = a[k] ;
            j = a[k + 1] ;
        }
    }

    cout << "Minimum distance is: " << minDistance << endl ;
    cout << "i = " << i << " j = " << j << endl ;
}

 

求两个有序数组的共同元素

给定两个含有n个元素的有序(非降序)整型数组a和b,求出其共同元素,比如

a = 0, 1, 2, 3, 4

b = 1, 3, 5, 7, 9

输出 1, 3

分析

充分利用数组有序的性质,用两个指针i和j分别指向a和b,比较a[i]和b[j],根据比较结果移动指针,则有如下三种情况

  1. a[i] < b[j],则i增加1,继续比较

  2. a[i] == b[j],则i和j皆加1,继续比较

  3. a[i] < b[j],则j加1,继续比较

重复以上过程直到i或j到达数组末尾。

代码

// 找出两个数组的共同元素
void FindCommon(int* a, int* b, int n)
{
    int i = 0;
    int j = 0 ;

    while (i < n && j < n)
    {
        if (a[i] < b[j])
            ++i ;
        else if(a[i] == b[j])
        {
            cout << a[i] << endl ;
            ++i ;
            ++j ;
        }
        else// a[i] > b[j]
            ++j ;
    }
}

 

这到题还有其他的解法,比如对于a中任意一个元素,在b中对其进行Binary Search,因为a中有n个元素,而在b中进行Binary Search需要logn。所以找出全部相同元素的时间复杂度是O(nlogn)。

另外,上面的方法,只要b有序即可,a是否有序无所谓,因为我们只是在b中做Binary Search。

如果a也有序的话,那么再用上面的方法就有点慢了,因为如果a中某个元素在b中的位置是k的话,那么a中下一个元素在b中的位置一定位于k的右侧,所以本次的搜索空间可以根据上次的搜索结果缩小,而不是仍然在整个b中搜索。也即如果a和b都有序的话,代码可以做如下修改,记录上次搜索时b中元素的位置,作为下一次搜索的起始点。

求三个数组的共同元素

给定三个含有n个元素的整型数组a,b和c,求他们最小的共同元素。

分析

如果三个数组都有序,那么可以设置三个指针指向三个数组的头部,然后根据这三个指针所指的值进行比较来移动指针,直道找到共同元素。

代码

// 三个数组的共同元素-只找最小的
void FindCommonElements(int a[], int b[], int c[], int x, int y, int z)
{
    for(int i = 0, j = 0, k = 0; i < x && j < y && k < z;)
    {
        if(a[i] < b[j])
        {
            i++ ;
        }
        else // a[i] >= b[j]
        {
            if(b[j] < c[k])
            {
                j++ ;
            }
            else // b[j] >= c[k]
            {
                if(c[k] < a[i])
                {
                    k++ ;
                }
                else // c[k] >= a[i]
                {
                    cout << c[k] << endl ;
                    return ;
                }
            }
        }
    }

    cout << "Not found!" << endl ;
}

 

如果三个数组都无序,可以先对a, b进行排序,然后对c中任意一个元素都在b和c中做二分搜索。

代码

// 找出三个数组的共同元素
// O(NlogN)
int UniqueCommonItem(int *a, int *b, int *c, int n)
{
    // sort array a
    qsort(a, n, sizeof(int), compare) ; // NlogN

    // sort array b
    qsort(b, n, sizeof(int), compare) ; // NlogN

    // for each element in array c, do a binary search in a and b
    // This is up to a complexity of N*2*logN
    for (int i = 0; i < n; i++)
    {
        if(BinarySearch(a, n, c[i]) && BinarySearch(b, n, c[i]))
            return c[i] ;
    }

    return - 1 ; // not found
}

 

也可以对a进行排序,然后对于b和c中任意一个元素都在a中进行二分搜索,但是这样做是有问题的,你看出来了么?感谢网友yy_5533指正。

代码

// 找出三个数组唯一的共同元素
// O(NlogN)
int UniqueCommonItem1(int *a, int *b, int *c, int n)
{
    // sort array a
    qsort(a, n, sizeof(int), compare) ; // NlogN

    // Space for time
    bool *bb = new bool[n] ;
    memset(bb, 0, n) ;

    bool *bc = new bool[n] ;
    memset(bb, 0, n) ;

    // for each element in b, do a BS in a and mark all the common element
    for (int i = 0; i < n; i++) // NlogN
    {
        if(BinarySearch(a, n, b[i]))
            bb[i] = true ;
    }

    // for each element in c, do a BS only if b[i] is true
    for (int i = 0; i < n; i++) // NlogN
    {
        if(b[i] && BinarySearch(a, n, c[i]))
            return c[i] ;
    }

    return - 1 ; // not found
}

 

排序和二分搜索代码如下

// Determine whether a contains value k
bool BinarySearch(int *a, int n, int k)
{
    int left = 0 ;
    int right = n - 1 ;
    while (left <= right)
    {
        int mid = (left + right) ;

        if(a[mid] < k)
            left = mid + 1 ;
        if(a[mid] == k)
            return true ;
        else
            right = mid - 1 ;
    }

    return false ;
}

// Compare function for qsort
int compare(const void* a, const void* b)
{
    return *(int*)a - *(int*)b ;
}

小小总结一下,对于在数组中进行查找的问题,可以分如下两种情况处理

  1. 如果给定的数组有序,那么首先应该想到Binary Search,所需O(logn)

  2. 如果给定的数组无序,那么首先应该想到对数组进行排序,很多排序算法都能在O(nlogn)时间内对数组进行排序,然后再使用二分搜索,总的时间复杂度仍是O(nlogn)。

如果能做到以上两点,大多数关于数组的查找问题,都能迎刃而解。

找出数组中唯一的重复元素

给定含有1001个元素的数组,其中存放了1-1000之内的整数,只有一个整数是重复的,请找出这个数

分析

求出整个数组的和,再减去1-1000的和

代码

找出出现奇数次的元素

给定一个含有n个元素的整型数组a,其中只有一个元素出现奇数次,找出这个元素。这道题实际上是一个变种,原题是找出数组中唯一一个出现一次的元素,下面的方法可以同时解决这两道提。所以题目就用这个广义的吧。

分析

因为对于任意一个数k,有k ^ k = 0,k ^ 0 = k,所以将a中所有元素进行异或,那么个数为偶数的元素异或后都变成了0,只留下了个数为奇数的那个元素。

代码

int FindElementWithOddCount(int*a, int n)
{
   int r = a[0] ;

   for (int i =1; i < n; ++i)
   {
      r ^= a[i] ;
   }

   return r ;
}

求数组中满足给定和的数对

给定两个有序整型数组a和b,各有n个元素,求两个数组中满足给定和的数对,即对a中元素i和b中元素j,满足i + j = d(d已知)

分析

两个指针i和j分别指向数组的首尾,然后从两端同时向中间遍历。

代码

// 找出满足给定和的数对
void FixedSum(int* a, int* b, int n, int d)
{
    for (int i = 0, j = n - 1; i < n && j >= 0)
    {
        if (a[i] + b[j] < d)
            ++i ;
        else if (a[i] + b[j] == d)
        {
            cout << a[i] << ", " << b[j] << endl ;
            ++i ;
            --j ;
        }
        else // a[i] + b[j] > d
            --j ;
    }
}

最大子段和

给定一个整型数组a,求出最大连续子段之和,如果和为负数,则按0计算,比如1, 2, -5, 6, 8则输出6 + 8 = 14

分析

编程珠玑上的经典题目,不多说了。

代码

// 子数组的最大和
int Sum(int* a, int n)
{
    int curSum = 0;
    int maxSum = 0;
    for (int i = 0; i < n; i++)
    {
        if (curSum + a[i] < 0)
            curSum = 0;
        else
        {
            curSum += a[i] ;
            maxSum = max(maxSum, curSum);
        }
    }
    return maxSum;
}

最大子段积

给定一个整型数组a,求出最大连续子段的乘积,比如 1, 2, -8, 12, 7则输出12 * 7 = 84

分析

与最大子段和类似,注意处理负数的情况

代码

// 子数组的最大乘积
int MaxProduct(int *a, int n)
{
    int maxProduct = 1; // max positive product at current position
    int minProduct = 1; // min negative product at current position
    int r = 1; // result, max multiplication totally

    for (int i = 0; i < n; i++)
    {
        if (a[i] > 0)
        {
            maxProduct *= a[i];
            minProduct = min(minProduct * a[i], 1);
        }
        else if (a[i] == 0)
        {
            maxProduct = 1;
            minProduct = 1;
        }
        else // a[i] < 0
        {
            int temp = maxProduct;
            maxProduct = max(minProduct * a[i], 1);
            minProduct = temp * a[i];
        }

        r = max(r, maxProduct);
    }

    return r;
}

数组循环移位

将一个含有n个元素的数组向右循环移动k位,要求时间复杂度是O(n),且只能使用两个额外的变量,这是在微软的编程之美上看到的一道题

分析

比如数组 1 2 3 4循环右移1位 将变成 4 1 2 3, 观察可知1 2 3 的顺序在移位前后没有改变,只是和4的位置交换了一下,所以等同于1 2 3 4 先划分为两部分

1 2 3 | 4,然后将1 2 3逆序,再将4 逆序 得到 3 2 1 4,最后整体逆序 得到 4 1 2 3

代码

// 将buffer中start和end之间的元素逆序
void Reverse( int buffer[], int start, int end )
{
    while ( start < end )
    {
        int temp = buffer[ start ] ;
        buffer[ start++ ] = buffer[ end ] ;
        buffer[ end-- ] = temp ;
    }
}

// 将含有n个元素的数组buffer右移k位
void Shift( int buffer[], int n, int k )
{
    k %= n ;

    Reverse( buffer, 0, n - k - 1) ;
    Reverse( buffer, n - k, n - 1 ) ;
    Reverse( buffer, 0, n - 1 ) ;
}

稍微扩展一下,如果允许分配额外的数组,那么定义一个新的数组,然后将移位后的元素直接存入即可,也可以使用队列,将移动后得元素出对,再插入队尾即可.

字符串逆序

给定一个含有n个元素的字符数组a,将其原地逆序。

分析

可能您觉得这不是关于数组的,而是关于字符串的。是的。但是别忘了题目要求的是原地逆序,也就是不允许额外分配空间,那么参数肯定是字符数组形式,因为字符串是不能被修改的(这里只C/C++中的字符串常量)。

所以,和数组有关了吧,只不过不是整型数组,而是字符数组。用两个指针分别指向字符数组的首位,交换其对应的字符,然后两个指针分别向数组中央移动,直到交叉。

代码

// 字符串逆序
void Reverse(char*a, int n)
{
   int left =0;
   int right = n -1;

   while (left < right)
   {
     char temp = a[left] ;
     a[left++] = a[right] ;
     a[right--] = temp ;
   }
}

组合问题

给定一个含有n个元素的整型数组a,从中任取m个元素,求所有组合。比如下面的例子

a = 1, 2, 3, 4, 5

m = 3

输出

1 2 3, 1 2 4, 1 2 5, 1 3 4, 1 3 5, 1 4 5

2 3 4, 2 3 5, 2 4 5
3 4 5

分析

典型的排列组合问题,首选回溯法,为了简化问题,我们将a中n个元素值分别设置为1-n

代码

// n选m的所有组合
int buffer[100] ;

void PrintArray(int *a, int n)
{
    for (int i = 0; i < n; ++i)
        cout << a[i] << "";
    cout << endl ;
}

bool IsValid(int lastIndex, int value)
{
    for (int i = 0; i < lastIndex; i++)
    {
        if (buffer[i] >= value)
            return false;
    }
    return true;
}

void Select(int t, int n, int m)
{
    if (t == m)
        PrintArray(buffer, m);
    else
    {
        for (int i = 1; i <= n; i++)
        {
            buffer[t] = i;
            if (IsValid(t, i))
                Select(t + 1, n, m);
        }
    }
}

合并两个数组

给定含有n个元素的两个有序(非降序)整型数组a和b。合并两个数组中的元素到整型数组c,要求去除重复元素并保持c有序(非降序)。例子如下

a = 1, 2, 4, 8

b = 1, 3, 5, 8

c = 1, 2, 3, 4, 5, 8

分析

利用合并排序的思想,两个指针i,j和k分别指向数组a和b,然后比较两个指针对应元素的大小,有以下三种情况

  1. a[i] < b[j],则c[k] = a[i]。

  2. a[i] == b[j],则c[k]等于a[i]或b[j]皆可。

  3. a[i] > b[j],则c[k] = b[j]。

重复以上过程,直到i或者j到达数组末尾,然后将剩下的元素直接copy到数组c中即可

代码

// 合并两个有序数组
void Merge(int *a, int *b, int *c, int n)
{
    int i = 0 ;
    int j = 0 ;
    int k = 0 ;

    while (i < n && j < n)
    {
        if (a[i] < b[j])// 如果a的元素小,则插入a中元素到c
        {
            c[k++] = a[i] ;
            ++i ;
        }
        else if (a[i] == b[j])// 如果a和b元素相等,则插入二者皆可,这里插入a
        {
            c[k++] = a[i] ;
            ++i ;
            ++j ;
        }
        else // a[i] > b[j] // 如果b中元素小,则插入b中元素到c
        {
            c[k++] = b[j] ;
            ++j ;
        }
    }

    if (i == n) // 若a遍历完毕,处理b中剩下的元素
    {
        for (int m = j; m < n; ++m)
            c[k++] = b[m] ;
    }
    else//j == n, 若b遍历完毕,处理a中剩下的元素
    {
        for (int m = i; m < n; ++m)
            c[k++] = a[m] ;
    }
}

重排问题

给定含有n个元素的整型数组a,其中包括0元素和非0元素,对数组进行排序,要求:

  1. 排序后所有0元素在前,所有非零元素在后,且非零元素排序前后相对位置不变

  2. 不能使用额外存储空间

例子如下

输入 0, 3, 0, 2, 1, 0, 0

输出 0, 0, 0, 0, 3, 2, 1

分析

此排序非传统意义上的排序,因为它要求排序前后非0元素的相对位置不变,或许叫做整理会更恰当一些。我们可以从后向前遍历整个数组,遇到某个位置i上的元素是非0元素时,如果a[k]为0,则将a[i]赋值给a[k],a[k]赋值为0。实际上i是非0元素的下标,而k是0元素的下标

代码

void Arrange(int* a, int n)
{
    int k = n -1 ;
    for (int i = n -1; i >=0; --i)
    {
        if (a[i] !=0)
        {
            if (a[k] ==0)
            {
                a[k] = a[i] ;
                a[i] =0 ;
            }
            --k ;
        }
    }
}

找出绝对值最小的元素

给定一个有序整数序列(非递减序),可能包含负数,找出其中绝对值最小的元素,比如给定序列 -5, -3, -1, 2, 8 则返回1。

分析

由于给定序列是有序的,而这又是搜索问题,所以首先想到二分搜索法,只不过这个二分法比普通的二分法稍微麻烦点,可以分为下面几种情况

  • 如果给定的序列中所有的数都是正数,那么数组的第一个元素即是结果。

  • 如果给定的序列中所有的数都是负数,那么数组的最后一个元素即是结果。

  • 如果给定的序列中既有正数又有负数,那么绝对值得最小值一定出现在正数和负数的连接处。

为什么?

因为对于负数序列来说,右侧的数字比左侧的数字绝对值小,如上面的-5, -3, -1, 而对于整整数来说,左边的数字绝对值小,比如上面的2, 8,将这个思想用于二分搜索,可先判断中间元素和两侧元素的符号,然后根据符号决定搜索区间,逐步缩小搜索区间,直到只剩下两个元素。

代码

单独设置一个函数用来判断两个整数的符号是否相同。

bool SameSign(int a, int b)
{
    if (a * b > 0)
        return true;
    else
        return false;
}

主函数代码。

// 找出一个非递减序整数序列中绝对值最小的数
int MinimumAbsoluteValue(int* a, int n)
{
    // Only one number in array
    if (n ==1)
    {
        return a[0] ;
    }

    // All numbers in array have the same sign
    if (SameSign(a[0], a[n -1]))
    {
        return a[0] >=0? a[0] : a[n -1] ;
    }

    // Binary search
    int l =0 ;
    int r = n -1 ;

    while(l < r)
    {
        if (l +1== r)
        {
            return abs(a[l]) < abs(a[r]) ? a[l] : a[r] ;
        }

        int m = (l + r) /2 ;

        if (SameSign(a[m], a[r]))
        {
            r = m -1;
            continue;
        }
        if (SameSign(a[l], a[m]))
        {
            l = m +1 ;
            continue;
        }
    }
}

这段代码是有问题的,你看出来了么?修改后的代码如下:

// 找出一个非递减序整数序列中绝对值最小的数
int MinimumAbsoluteValue(int* a, int n)
{
    // Only one number in array
    if (n ==1)
    {
        return a[0] ;
    }

    // All numbers in array have the same sign
    if (SameSign(a[0], a[n -1]))
    {
        return a[0] >=0? a[0] : a[n -1] ;
    }

    // Binary search
    int l =0 ;
    int r = n -1 ;

    while(l < r)
    {
        if (l + 1 == r)
        {
            return abs(a[l]) < abs(a[r]) ? a[l] : a[r] ;
        }

        int m = (l + r) /2 ;

        if (SameSign(a[m], a[r]))
        {
            r = m;
            continue;
        }
        else
        {
            l = m ;
            continue;
        }
    }
}

C语言\C++编程交流公众号:奇牛编程 文章来源地址https://www.toymoban.com/news/detail-463627.html

到了这里,关于数组的玩法比我以为的要多的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 不用996,不用007,赚的还比我多?我直接好家伙

    今天打开手机就看见信息99+,哟吼,还挺热闹——感情都在上班摸鱼呢。 好奇心让我点了第一条未读信息,好家伙,直接让我手机闪退出APP了! 嗨,我这暴脾气,直接手动滑到了第一条!但是我没想到到他们只是在日常卷,一水就水了那么多。 更奇葩的是群里的一个人的发

    2023年04月20日
    浏览(81)
  • 字节给的比我想的还多?网友看完:打死也要去

    曾经的互联网是PC的时代,随着智能手机的普及,移动互联网开始飞速崛起。而字节跳动抓住了这波机遇,2015年,字节跳动全面加码短视频,从那以后,抖音成为了字节跳动用户、收入和估值的最大增长引擎。 自从字节逐步壮大之后,也成了IT行业人才除了BAT之外的第一选择

    2024年02月04日
    浏览(47)
  • 你以为你很优秀,但却面试屡屡失败?

    二哥,最近我在参加面试,但遇到了一个很尴尬的现实:我以为自己很优秀,但面试官好像对我有偏见,面试屡屡失败,现在有点心慌了,我该怎么办呢? 以上是读者小利问我的一个问题,我觉得挺值得认真分析一下的。在回答问题之前,我先来说一件事。 去年的这个时候

    2024年02月08日
    浏览(52)
  • 你以为的docker有多难,学会这些组内横着走

    docker官网 1)yum安装gcc相关: 2)安装软件包: 3)更新yum软件包索引: 4)安装Docker CE: 5) 启动docker: 6) 阿里云镜像加速器配置: 启动docker:systemctl start docker 停止docker:systemctl stop docker 重启docker:systemctl restart docker 查看docker状态:systemctl status docker 开机启动:systemct

    2023年04月12日
    浏览(45)
  • 我以为发现了Android 14系统中的一个bug,然而...

    本文同步发表于我的微信公众号,扫一扫文章底部的二维码或在微信搜索 郭霖 即可关注,每个工作日都有文章更新。 今天来跟大家探讨一个Android 14很细节的知识点。 事情的起因是这样的,某天工作群里,我看到我们部门的同事guting发了这样一条消息。 我看到这条消息之后

    2024年02月02日
    浏览(51)
  • 4年经验面试要15K,一问自动化却以为我在刁难他?

    金3银4黄金期,我们公司也开始大量招人了,我这次是公司招聘的面试官之一,主要负责一些技术上的考核,这段时间还真让我碰到了不少奇葩求职者 昨天公司的HR小席刚跟我吐槽:这个星期没有哪天不加班的!各种招聘网站上的消息源源不断,连吃饭都要回消息…… 看来最

    2023年04月09日
    浏览(34)
  • 做减法才是真本事,别以为你很能学,做加法一点都不难

    顶级的高手才敢做减法 前言 一、做减法才是真本事 二、大数据梦想联盟活动开启 大多数人不懂,不会,不做,才是你的机会,你得行动,不能畏首畏尾 大数据等于趋势,一个向上趋势的行业会让你赚得比其他行业多 做减法,才是真本事。 想知道一个人是菜鸟还是高手,就

    2024年02月02日
    浏览(41)
  • 你以为搞个流水线每天跑,团队就在使用CI/CD实践了?

    在实践中,很多团队对于DevOps 流水线没有很透彻的理解,要不就创建一大堆流水线,要不就一个流水线通吃。实际上,流水线的设计和写代码一样,需要基于“业务场景”进行一定的设计编排,特别是很多通过“开源工具”搭建的流水线,更需要如此(商业的一体化平台大部

    2024年02月08日
    浏览(55)
  • 你以为你守规矩就没事了吗?你还是太年轻了,老程序员告诉你实情

    大家好! 今天我们不讲这个技术了 我们来讲一些程序员的职场问题 在这里我先给大家提一个问题 不守规矩的程序员 他到底过得舒不舒服 大家可以把心里想的答案 写在这个公屏上面 我这里呢先给大家说一个案例 大家就知道这个答案了 这里有两个同事 一个叫小明一个叫小强

    2023年04月21日
    浏览(40)
  • 训练模型时,wandb关闭问题。你以为加了一句 wandb = None 就能关闭了吗?

    最近在训练模型的时候,总是弹出让我登录wandb官网,先暂且不谈使用wandb的好处。 第一次就把wandb注册了,记得好像需要挂VPN才可以访问。 但是后来才发现,每一次进行训练都会出现 wandb: Currently logged in as: liudawei. Use `wandb login --relogin` to force relogin. 这就意味着每次都得登录

    2024年02月02日
    浏览(50)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包