PyTorch 深度学习 || 专题二:PyTorch 编程基础

这篇具有很好参考价值的文章主要介绍了PyTorch 深度学习 || 专题二:PyTorch 编程基础。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

PyTorch 深度学习模块化计算基础语法

1. backword 求梯度

文章来源地址https://www.toymoban.com/news/detail-464095.html

到了这里,关于PyTorch 深度学习 || 专题二:PyTorch 编程基础的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 16 PyTorch 神经网络基础【李沐动手学深度学习v2】

    在构造自定义块之前,我们先回顾一下多层感知机的代码。 下面的代码生成一个网络,其中包含一个具有256个单元和ReLU激活函数的全连接隐藏层, 然后是一个具有10个隐藏单元且不带激活函数的全连接输出层。 层和块 构造单层神经网咯:线性层+RELU+线性层 生成2x20(2是批量

    2024年03月10日
    浏览(84)
  • 【自学记录】【Pytorch2.0深度学习从零开始学 王晓华】第四章 深度学习的理论基础

    遇到的疑问: 1、对神经网络前向计算中,关于系数矩阵W的讨论。 上一章讲到了层结构是【out,in】,所以我觉得在计算Y=WX+b的时候,W矩阵也应该是【out,in】的形状。但是该代码(或者正规代码实现流程)不是的,他是一个这样的结构: 所以,W矩阵还是【in,out】结构,a1=X1 W

    2024年04月09日
    浏览(54)
  • 《PyTorch深度学习实践》第十一讲 循环神经网络(基础篇 + 高级篇)

    b站刘二大人《PyTorch深度学习实践》课程第十一讲循环神经网络(基础篇 + 高级篇)笔记与代码: https://www.bilibili.com/video/BV1Y7411d7Ys?p=12vd_source=b17f113d28933824d753a0915d5e3a90 https://www.bilibili.com/video/BV1Y7411d7Ys?p=13spm_id_from=pageDrivervd_source=b17f113d28933824d753a0915d5e3a90 markdown笔记:https://gi

    2024年02月13日
    浏览(40)
  • 深度学习基础——通过PyTorch构建神经网络实现1维/2维序列分类

    通过PyTorch构建前馈神经网络,并对二维数据点进行分类。在该例子当中,所有的训练数据和测试数据都是通过高斯混合模型GMM生成的: 更换使用循环神经网络RNN模型,进行1维序列分类任务。 为了简化问题,我们假定: 序列的长度是固定的。我们将其长度设为T=4。 我们只有

    2024年02月11日
    浏览(40)
  • 【深度学习】张量的广播专题

            张量广播(tensor broadcasting)是一种将低维张量自动转化为高维张量的技术,使得张量之间可以进行基于元素的运算(如加、减、乘等)。在进行张量广播时,会将维度数较少的张量沿着长度为1的轴进行复制,在匹配维度后,两个张量就可以进行运算。

    2024年02月16日
    浏览(38)
  • 【深度学习】编码器专题(02)

    前文见: 【深度学习】编码器专题(01)          在上面的示例中, src_mask 设置为 “无”。 如第三篇文章所述,可选的掩码可以通过多头注意力层传递。对于编码器,此掩码通常是根据序列的填充创建的。本文中使用的三个序列的长度均为 6。但是,不同长度的序列更

    2024年02月16日
    浏览(46)
  • 深度学习必备书籍——《Python深度学习 基于Pytorch》

    作为一名机器学习|深度学习的博主,想和大家分享几本 深度学习 的书籍,让大家更快的入手深度学习,成为AI达人!今天给大家介绍的是: 《Python深度学习 基于Pytorch》 在人工智能时代,如何尽快掌握人工智能的核心—深度学习呢?相信这是每个欲进入此领域的人面临的主

    2023年04月09日
    浏览(88)
  • Pytorch深度学习 - 学习笔记

    dir() :打开,看见包含什么 help() :说明书 pytorch中读取数据主要涉及到两个类 Dataset 和 Dataloader 。 Dataset可以将可以使用的数据提取出来,并且可以对数据完成编号。即提供一种方式获取数据及其对应真实的label值。 Dataloader为网络提供不同的数据形式。 Dataset Dataset是一个抽

    2024年02月07日
    浏览(44)
  • PyTorch深度学习实战 | 基于深度学习的电影票房预测研究

    基于深度学习的映前票房预测模型(CrossDense网络结构模型),该模型通过影片基本信息如:电影类型、影片制式、档期和电影的主创阵容和IP特征等信息对上映影片的票房进行预测。 本篇采用451部电影作为训练模型,最后再在194部影片上进行测试,模型的绝对精度为55%,相对精

    2023年04月24日
    浏览(39)
  • PyTorch深度学习实战(15)——迁移学习

    迁移学习( Transfer Learning )是一种利用从一项任务中获得的知识来解决另一项类似任务的技术。一个使用数百万张图像训练的模型,训练数据涵盖数千种对象类别,模型的卷积核将能够学习图像中的各种形状、颜色和纹理,通过重用这些卷积核可以学习到新图像的特征,并最终

    2024年02月09日
    浏览(45)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包