【爬虫+数据清洗+可视化】用Python分析“淄博烧烤“的评论数据

这篇具有很好参考价值的文章主要介绍了【爬虫+数据清洗+可视化】用Python分析“淄博烧烤“的评论数据。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录
  • 一、背景介绍
  • 二、爬虫代码
    • 2.1 展示爬取结果
    • 2.2 爬虫代码讲解
  • 三、可视化代码
    • 3.1 读取数据
    • 3.2 数据清洗
    • 3.3 可视化
      • 3.3.1 IP属地分析-柱形图
      • 3.3.2 评论时间分析-折线图
      • 3.3.3 点赞数分布-箱线图
      • 3.3.4 评论内容-情感分布饼图
      • 3.3.5 评论内容-词云图
  • 四、技术总结
  • 五、演示视频
  • 六、完整源码

一、背景介绍

您好,我是@马哥python说 ,一枚10年程序猿。

自从2023.3月以来,"淄博烧烤"现象持续占领热搜流量,体现了后疫情时代众多网友对人间烟火气的美好向往,本现象级事件存在一定的数据分析实践意义。

我用Python爬取并分析了B站众多网友的评论,并得出一系列分析结论。

二、爬虫代码

2.1 展示爬取结果

首先,看下部分爬取数据:
【爬虫+数据清洗+可视化】用Python分析“淄博烧烤“的评论数据

爬取字段含:视频链接、评论页码、评论作者、评论时间、IP属地、点赞数、评论内容

2.2 爬虫代码讲解

导入需要用到的库:

import requests  # 发送请求
import pandas as pd  # 保存csv文件
import os  # 判断文件是否存在
import time
from time import sleep  # 设置等待,防止反爬
import random  # 生成随机数

定义一个请求头:

# 请求头
headers = {
    'authority': 'api.bilibili.com',
    'accept': 'application/json, text/plain, */*',
    'accept-language': 'zh-CN,zh;q=0.9,en;q=0.8,en-GB;q=0.7,en-US;q=0.6',
    # 需定期更换cookie,否则location爬不到
    'cookie': "需换成自己的cookie值",
    'origin': 'https://www.bilibili.com',
    'referer': 'https://www.bilibili.com/video/BV1FG4y1Z7po/?spm_id_from=333.337.search-card.all.click&vd_source=69a50ad969074af9e79ad13b34b1a548',
    'sec-ch-ua': '"Chromium";v="106", "Microsoft Edge";v="106", "Not;A=Brand";v="99"',
    'sec-ch-ua-mobile': '?0',
    'sec-ch-ua-platform': '"Windows"',
    'sec-fetch-dest': 'empty',
    'sec-fetch-mode': 'cors',
    'sec-fetch-site': 'same-site',
    'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/106.0.0.0 Safari/537.36 Edg/106.0.1370.47'
}

请求头中的cookie是个很关键的参数,如果不设置cookie,会导致数据残缺或无法爬取到数据。

那么cookie如何获取呢?打开开发者模式,见下图:
【爬虫+数据清洗+可视化】用Python分析“淄博烧烤“的评论数据

由于评论时间是个十位数:
【爬虫+数据清洗+可视化】用Python分析“淄博烧烤“的评论数据

所以开发一个函数用于转换时间格式:

def trans_date(v_timestamp):
    """10位时间戳转换为时间字符串"""
    timeArray = time.localtime(v_timestamp)
    otherStyleTime = time.strftime("%Y-%m-%d %H:%M:%S", timeArray)
    return otherStyleTime

向B站发送请求:

response = requests.get(url, headers=headers, )  # 发送请求

接收到返回数据了,怎么解析数据呢?看一下json数据结构:
【爬虫+数据清洗+可视化】用Python分析“淄博烧烤“的评论数据

0-19个评论,都存放在replies下面,replies又在data下面,所以,这样解析数据:

data_list = response.json()['data']['replies']  # 解析评论数据

这样,data_list里面就是存储的每条评论数据了。

接下来吗,就是解析出每条评论里的各个字段了。

我们以评论内容这个字段为例:

comment_list = []  # 评论内容空列表
# 循环爬取每一条评论数据
for a in data_list:
    # 评论内容
    comment = a['content']['message']
    comment_list.append(comment)

其他字段同理,不再赘述。

最后,把这些列表数据保存到DataFrame里面,再to_csv保存到csv文件,持久化存储完成:

# 把列表拼装为DataFrame数据
df = pd.DataFrame({
    '视频链接': 'https://www.bilibili.com/video/' + v_bid,
    '评论页码': (i + 1),
    '评论作者': user_list,
    '评论时间': time_list,
    'IP属地': location_list,
    '点赞数': like_list,
    '评论内容': comment_list,
})
# 把评论数据保存到csv文件
df.to_csv(outfile, mode='a+', encoding='utf_8_sig', index=False, header=header)

注意,加上encoding='utf_8_sig',否则可能会产生乱码问题!
下面,是主函数循环爬取部分代码:(支持多个视频的循环爬取)

# 随便找了几个"淄博烧烤"相关的视频ID
bid_list = ['BV1dT411p7Kd', 'BV1Ak4y1n7Zb', 'BV1BX4y1m7jP']
# 评论最大爬取页(每页20条评论)
max_page = 30
# 循环爬取这几个视频的评论
for bid in bid_list:
    # 输出文件名
    outfile = 'b站评论_{}.csv'.format(now)
    # 转换aid
    aid = bv2av(bid=bid)
    # 爬取评论
    get_comment(v_aid=aid, v_bid=bid)

三、可视化代码

为了方便看效果,以下代码采用jupyter notebook进行演示。

3.1 读取数据

用read_csv读取刚才爬取的B站评论数据:
【爬虫+数据清洗+可视化】用Python分析“淄博烧烤“的评论数据

查看前3行及数据形状:
【爬虫+数据清洗+可视化】用Python分析“淄博烧烤“的评论数据

3.2 数据清洗

处理空值及重复值:
【爬虫+数据清洗+可视化】用Python分析“淄博烧烤“的评论数据

3.3 可视化

3.3.1 IP属地分析-柱形图

【爬虫+数据清洗+可视化】用Python分析“淄博烧烤“的评论数据
结论:从柱形图来看,山东位居首位,说明淄博烧烤也受到本地人大力支持,其次是四川、广东等地讨论热度最高。

3.3.2 评论时间分析-折线图

【爬虫+数据清洗+可视化】用Python分析“淄博烧烤“的评论数据
结论:从折线图来看,4月26日左右达到讨论热度顶峰,其次是5月1号即五一劳动节假期第一天,大量网友的"进淄赶烤"也制造了新的讨论热度。

3.3.3 点赞数分布-箱线图

由于点赞数大部分为0或个位数情况,个别点赞数到达成千上万,箱线图展示效果不佳,因此,仅提取点赞数<10的数据绘制箱线图。
【爬虫+数据清洗+可视化】用Python分析“淄博烧烤“的评论数据
结论:从箱线图来看,去除超过10个点赞数评论数据之后,大部分评论集中在0-3个点赞之间,也就是只有少量评论引起网友的点赞共鸣和认可。

3.3.4 评论内容-情感分布饼图

针对中文评论数据,采用snownlp开发情感判定函数:
【爬虫+数据清洗+可视化】用Python分析“淄博烧烤“的评论数据

情感分布饼图,如下:
【爬虫+数据清洗+可视化】用Python分析“淄博烧烤“的评论数据
结论:从饼图来看,积极和消极分别占比不到一半,说明广大网友在认可淄博烧烤现象的同时,也有大量负面讨论存在,比如讨论烧烤的价格略高、住宿条件欠佳、环境污染等负面话题。

3.3.5 评论内容-词云图

由于评论内容中存在很多"啊"、"的"、"了"等无意义的干扰词,影响高频词的提取,因此,采用哈工大停用词表作为停用词词典,对干扰词进行屏蔽:
【爬虫+数据清洗+可视化】用Python分析“淄博烧烤“的评论数据

然后,绘制词云图:
【爬虫+数据清洗+可视化】用Python分析“淄博烧烤“的评论数据

结论:从词云图来看,"淄博"、"烧烤"、"山东"、"好吃"、"城市"、"好"、"物价"等正面词汇字体较大,体现出众多网友对以「淄博烧烤」为代表的后疫情时代人间烟火的美好向往。

四、技术总结

淄博烧烤」案例完整开发流程:

  1. requests爬虫
  2. json解析
  3. pandas保存csv
  4. pandas数据清洗
  5. snownlp情感分析
  6. matplotlib可视化,含:

1)IP属地分析-柱形图Bar
2)评论时间分析-折线图Line
3)点赞数分布-箱线图Boxplot
4)评论内容-情感分布饼图Pie
5)评论内容-词云图WordCloud

五、演示视频

代码演示视频:https://www.bilibili.com/video/BV18s4y1B71z

六、完整源码

完整源码:【爬虫+数据清洗+可视化分析】舆情分析"淄博烧烤"的B站评论


我是 @马哥python说 ,持续分享python源码干货中!文章来源地址https://www.toymoban.com/news/detail-464461.html

到了这里,关于【爬虫+数据清洗+可视化】用Python分析“淄博烧烤“的评论数据的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Python大作业——爬虫+可视化+数据分析+数据库(可视化篇)

    相关链接 Python大作业——爬虫+可视化+数据分析+数据库(简介篇) Python大作业——爬虫+可视化+数据分析+数据库(爬虫篇) Python大作业——爬虫+可视化+数据分析+数据库(数据分析篇) Python大作业——爬虫+可视化+数据分析+数据库(数据库篇) 由于该程序会通过与数据库

    2024年02月04日
    浏览(61)
  • 大数据毕设 大数据招聘岗位数据分析与可视化 - 爬虫 python 大屏可视化

    # 1 前言 🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。 为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项

    2024年02月10日
    浏览(53)
  • Python爬虫+数据可视化:分析唯品会商品数据

    唯品会是中国领先的在线特卖会电商平台之一,它以“品牌特卖会”的模式运营,为会员提供品牌折扣商品。唯品会的商品包括服装、鞋类、箱包、美妆、家居、母婴、食品等各类品牌产品。 这就是今天的受害者,我们要拿取上面的泳衣数据,然后可以做些数据可视化 1. 明

    2024年02月15日
    浏览(53)
  • 大数据毕设分享 大数据招聘岗位数据分析与可视化 - 爬虫 python 大屏可视化

    # 1 前言 🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。 为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项

    2024年02月04日
    浏览(58)
  • 大数据毕设项目 大数据招聘岗位数据分析与可视化 - 爬虫 python 大屏可视化

    # 1 前言 🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。 为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项

    2024年02月05日
    浏览(44)
  • Python爬虫:批量采集58同城数据,进行可视化分析!

    哈喽大家好,今天我们来获取一下某个生活平台网站数据,进行可视化分析。 采集58的数据可以使用Python的requests库和beautifulsoup库,数据可视化分析可以使用matplotlib库和seaborn库。下面是一个简单的例子: 1、首先导入需要使用的模块   2、设置请求头,模拟浏览器请求。  

    2024年02月06日
    浏览(47)
  • python爬虫分析基于python图书馆书目推荐数据分析与可视化

    收藏关注不迷路 随着电子技术的普及和快速发展,线上管理系统被广泛的使用,有很多商业机构都在实现电子信息化管理,图书推荐也不例外,由比较传统的人工管理转向了电子化、信息化、系统化的管理。 传统的图书推荐管理,一开始都是手工记录,然后将手工记录的文

    2024年02月08日
    浏览(46)
  • Python淘宝手机爬虫数据可视化分析大屏全屏系统

     博主介绍 :黄菊华老师《Vue.js入门与商城开发实战》《微信小程序商城开发》图书作者,CSDN博客专家,在线教育专家,CSDN钻石讲师;专注大学生毕业设计教育和辅导。 所有项目都配有从入门到精通的基础知识视频课程,学习后应对毕业设计答辩。 项目配有对应开发文档、

    2024年04月17日
    浏览(48)
  • Python爬虫淘宝手机数据可视化分析大屏全屏系统

     博主介绍 :黄菊华老师《Vue.js入门与商城开发实战》《微信小程序商城开发》图书作者,CSDN博客专家,在线教育专家,CSDN钻石讲师;专注大学生毕业设计教育和辅导。 所有项目都配有从入门到精通的基础知识视频课程,免费 项目配有对应开发文档、开题报告、任务书、

    2024年02月03日
    浏览(48)
  • Python招聘信息爬虫数据可视化分析大屏全屏系统

     博主介绍 :黄菊华老师《Vue.js入门与商城开发实战》《微信小程序商城开发》图书作者,CSDN博客专家,在线教育专家,CSDN钻石讲师;专注大学生毕业设计教育和辅导。 所有项目都配有从入门到精通的基础知识视频课程,学习后应对毕业设计答辩。 项目配有对应开发文档、

    2024年04月09日
    浏览(60)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包