神经网络学习小记录73——Pytorch CA(Coordinate attention)注意力机制的解析与代码详解

这篇具有很好参考价值的文章主要介绍了神经网络学习小记录73——Pytorch CA(Coordinate attention)注意力机制的解析与代码详解。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

学习前言

CA注意力机制是最近提出的一种注意力机制,全面关注特征层的空间信息和通道信息。
神经网络学习小记录73——Pytorch CA(Coordinate attention)注意力机制的解析与代码详解

代码下载

Github源码下载地址为:
https://github.com/bubbliiiing/yolov4-tiny-pytorch

复制该路径到地址栏跳转。

CA注意力机制的概念与实现

神经网络学习小记录73——Pytorch CA(Coordinate attention)注意力机制的解析与代码详解
该文章的作者认为现有的注意力机制(如CBAM、SE)在求取通道注意力的时候,通道的处理一般是采用全局最大池化/平均池化,这样会损失掉物体的空间信息。作者期望在引入通道注意力机制的同时,引入空间注意力机制,作者提出的注意力机制将位置信息嵌入到了通道注意力中。

CA注意力的实现如图所示,可以认为分为两个并行阶段:

将输入特征图分别在为宽度和高度两个方向分别进行全局平均池化,分别获得在宽度和高度两个方向的特征图。假设输入进来的特征层的形状为[C, H, W],在经过宽方向的平均池化后,获得的特征层shape为[C, H, 1],此时我们将特征映射到了高维度上;在经过高方向的平均池化后,获得的特征层shape为[C, 1, W],此时我们将特征映射到了宽维度上。

然后将两个并行阶段合并,将宽和高转置到同一个维度,然后进行堆叠,将宽高特征合并在一起,此时我们获得的特征层为:[C, 1, H+W],利用卷积+标准化+激活函数获得特征。

之后再次分开为两个并行阶段,再将宽高分开成为:[C, 1, H]和[C, 1, W],之后进行转置。获得两个特征层[C, H, 1]和[C, 1, W]。

然后利用1x1卷积调整通道数后取sigmoid获得宽高维度上的注意力情况。乘上原有的特征就是CA注意力机制。

实现的python代码为:

class CA_Block(nn.Module):
    def __init__(self, channel, reduction=16):
        super(CA_Block, self).__init__()
        
        self.conv_1x1 = nn.Conv2d(in_channels=channel, out_channels=channel//reduction, kernel_size=1, stride=1, bias=False)
 
        self.relu   = nn.ReLU()
        self.bn     = nn.BatchNorm2d(channel//reduction)
 
        self.F_h = nn.Conv2d(in_channels=channel//reduction, out_channels=channel, kernel_size=1, stride=1, bias=False)
        self.F_w = nn.Conv2d(in_channels=channel//reduction, out_channels=channel, kernel_size=1, stride=1, bias=False)
 
        self.sigmoid_h = nn.Sigmoid()
        self.sigmoid_w = nn.Sigmoid()
 
    def forward(self, x):
        _, _, h, w = x.size()
        
        x_h = torch.mean(x, dim = 3, keepdim = True).permute(0, 1, 3, 2)
        x_w = torch.mean(x, dim = 2, keepdim = True)
 
        x_cat_conv_relu = self.relu(self.bn(self.conv_1x1(torch.cat((x_h, x_w), 3))))
 
        x_cat_conv_split_h, x_cat_conv_split_w = x_cat_conv_relu.split([h, w], 3)
 
        s_h = self.sigmoid_h(self.F_h(x_cat_conv_split_h.permute(0, 1, 3, 2)))
        s_w = self.sigmoid_w(self.F_w(x_cat_conv_split_w))
 
        out = x * s_h.expand_as(x) * s_w.expand_as(x)
        return out

注意力机制的应用

注意力机制是一个即插即用的模块,理论上可以放在任何一个特征层后面,可以放在主干网络,也可以放在加强特征提取网络。

由于放置在主干会导致网络的预训练权重无法使用,本文以YoloV4-tiny为例,将注意力机制应用加强特征提取网络上。

如下图所示,我们在主干网络提取出来的两个有效特征层上增加了注意力机制,同时对上采样后的结果增加了注意力机制
神经网络学习小记录73——Pytorch CA(Coordinate attention)注意力机制的解析与代码详解
实现代码如下:文章来源地址https://www.toymoban.com/news/detail-464473.html

attention_block = [se_block, cbam_block, eca_block, CA_Block]

#---------------------------------------------------#
#   特征层->最后的输出
#---------------------------------------------------#
class YoloBody(nn.Module):
    def __init__(self, anchors_mask, num_classes, phi=0):
        super(YoloBody, self).__init__()
        self.phi            = phi
        self.backbone       = darknet53_tiny(None)

        self.conv_for_P5    = BasicConv(512,256,1)
        self.yolo_headP5    = yolo_head([512, len(anchors_mask[0]) * (5 + num_classes)],256)

        self.upsample       = Upsample(256,128)
        self.yolo_headP4    = yolo_head([256, len(anchors_mask[1]) * (5 + num_classes)],384)

        if 1 <= self.phi and self.phi <= 3:
            self.feat1_att      = attention_block[self.phi - 1](256)
            self.feat2_att      = attention_block[self.phi - 1](512)
            self.upsample_att   = attention_block[self.phi - 1](128)

    def forward(self, x):
        #---------------------------------------------------#
        #   生成CSPdarknet53_tiny的主干模型
        #   feat1的shape为26,26,256
        #   feat2的shape为13,13,512
        #---------------------------------------------------#
        feat1, feat2 = self.backbone(x)
        if 1 <= self.phi and self.phi <= 3:
            feat1 = self.feat1_att(feat1)
            feat2 = self.feat2_att(feat2)

        # 13,13,512 -> 13,13,256
        P5 = self.conv_for_P5(feat2)
        # 13,13,256 -> 13,13,512 -> 13,13,255
        out0 = self.yolo_headP5(P5) 

        # 13,13,256 -> 13,13,128 -> 26,26,128
        P5_Upsample = self.upsample(P5)
        # 26,26,256 + 26,26,128 -> 26,26,384
        if 1 <= self.phi and self.phi <= 3:
            P5_Upsample = self.upsample_att(P5_Upsample)
        P4 = torch.cat([P5_Upsample,feat1],axis=1)

        # 26,26,384 -> 26,26,256 -> 26,26,255
        out1 = self.yolo_headP4(P4)
        
        return out0, out1

到了这里,关于神经网络学习小记录73——Pytorch CA(Coordinate attention)注意力机制的解析与代码详解的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • pytorch学习——线性神经网络——1线性回归

    概要:线性神经网络是一种最简单的神经网络模型,它由若干个线性变换和非线性变换组成。线性变换通常表示为矩阵乘法,非线性变换通常是一个逐元素的非线性函数。线性神经网络通常用于解决回归和分类问题。         线性回归是一种常见的机器学习算法,用于建

    2024年02月15日
    浏览(44)
  • PyTorch入门学习(八):神经网络-卷积层

    目录 一、数据准备 二、创建卷积神经网络模型 三、可视化卷积前后的图像 一、数据准备 首先,需要准备一个数据集来演示卷积层的应用。在这个示例中,使用了CIFAR-10数据集,该数据集包含了10个不同类别的图像数据,用于分类任务。使用PyTorch的 torchvision 库来加载CIFAR-1

    2024年02月07日
    浏览(43)
  • 小白的机器学习之路(四)神经网络的初步认识:基于pytorch搭建自己的神经网络

    当前交通大数据业务的需要,需要承担一部分算法工作(数据处理) 目标四: 学习深度学习基础:了解神经网络的基本结构、反向传播算法和激活函数等。 目标任务:使用深度学习算法构建一个简单的神经网络模型,并训练模型。 学习计划小贴士: 每天定期复习前几天的

    2024年02月15日
    浏览(37)
  • Pytorch深度学习-----神经网络之线性层用法

    PyTorch深度学习——Anaconda和PyTorch安装 Pytorch深度学习-----数据模块Dataset类 Pytorch深度学习------TensorBoard的使用 Pytorch深度学习------Torchvision中Transforms的使用(ToTensor,Normalize,Resize ,Compose,RandomCrop) Pytorch深度学习------torchvision中dataset数据集的使用(CIFAR10) Pytorch深度学习--

    2024年02月14日
    浏览(34)
  • 神经网络小记-过拟合与欠拟合

    过拟合(Overfitting)是机器学习和深度学习中常见的问题,指模型在训练数据上表现得非常好,但在新数据上表现较差,即模型过度拟合了训练数据的特征,导致泛化能力不足。 解决过拟合的方式包括以下几种: 数据集扩充:增加更多的训练样本,使得模型能够学习更多不同

    2024年02月16日
    浏览(41)
  • PyTorch入门学习(六):神经网络的基本骨架使用

    目录 一、引言 二、创建神经网络骨架 三、执行前向传播 一、引言 神经网络是深度学习的基础。在PyTorch中,可以使用 nn.Module 类创建自定义神经网络模型。本文将演示如何创建一个简单的神经网络骨架并执行前向传播操作。 二、创建神经网络骨架 首先,导入PyTorch库并创建

    2024年02月08日
    浏览(40)
  • 动手学深度学习-pytorch版本(二):线性神经网络

    参考引用 动手学深度学习 神经网络的整个训练过程,包括: 定义简单的神经网络架构、数据处理、指定损失函数和如何训练模型 。经典统计学习技术中的 线性回归 和 softmax 回归 可以视为线性神经网络 1.1 线性回归 回归 (regression) 是能为一个或多个自变量与因变量之间关系建

    2024年02月12日
    浏览(47)
  • PyTorch入门学习(十):神经网络-非线性激活

    目录 一、简介 二、常见的非线性激活函数 三、实现非线性激活函数 四、示例:应用非线性激活函数 一、简介 在神经网络中,激活函数的主要目的是引入非线性特性,从而使网络能够对非线性数据建模。如果只使用线性变换,那么整个神经网络就会退化为一个线性模型,因

    2024年02月06日
    浏览(43)
  • Pytorch入门学习——快速搭建神经网络、优化器、梯度计算

    我的代码可以在我的Github找到 GIthub地址 https://github.com/QinghongShao-sqh/Pytorch_Study 因为最近有同学问我如何Nerf入门,这里就简单给出一些我的建议: (1)基本的pytorch,机器学习,深度学习知识,本文介绍的pytorch知识掌握也差不多. 机器学习、深度学习零基础的话B站​吴恩达、

    2024年02月14日
    浏览(39)
  • PyTorch入门学习(九):神经网络-最大池化使用

    目录 一、数据准备 二、创建神经网络模型 三、可视化最大池化效果 一、数据准备 首先,需要准备一个数据集来演示最大池化层的应用。在本例中,使用了CIFAR-10数据集,这是一个包含10个不同类别图像的数据集,用于分类任务。我们使用PyTorch的 torchvision 库来加载CIFAR-10数据

    2024年02月07日
    浏览(31)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包