因果推断阶段系列19[阶段2-1]-机器学习预测模型与因果推断

这篇具有很好参考价值的文章主要介绍了因果推断阶段系列19[阶段2-1]-机器学习预测模型与因果推断。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1. 预测模型

因果推断的第一部分已经完成。该部分涵盖了因果推断的核心内容,相关的技术非常著名和成熟。第一部分为我们构建了可靠的基础。具体来说,第一部分重点介绍了因果推断的定义,以及避免将相关误认为因果的偏差、调整这些偏差的多种方法(如回归、匹配和倾向得分),以及经典的识别策略(IV、DID和RDD)。总而言之,前面的系列内容着重介绍了估计平均处理效应 文章来源地址https://www.toymoban.com/news/detail-464640.html

到了这里,关于因果推断阶段系列19[阶段2-1]-机器学习预测模型与因果推断的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • [因果推断] 增益模型(Uplift Model)介绍(三)

    增益模型(uplift model):估算干预增量(uplift),即 干预动作(treatment) 对 用户响应行为(outcome) 产生的效果。 这是一个 因果推断(Causal Inference) 课题下估算 ITE (Individual Treatment Effect)的问题——估算同一个体在 干预与不干预 (互斥情况下)不同outcome的差异。为了克

    2024年02月06日
    浏览(34)
  • 因果推断之微软开源的dowhy使用学习

    本文参考微软dowhy官网文档,并参考相关博客进行整理而来,官方地址:https://github.com/py-why/dowhy 因果推理 是基于观察数据进行反事实估计,分析干预与结果之间的因果关系。 DoWhy是微软发布的 端到端 因果推断Python库,主要特点是: 基于一定经验假设的基础上,将问题转化

    2024年02月09日
    浏览(37)
  • 因果推断(六)基于微软框架dowhy的因果推断

    DoWhy 基于因果推断的两大框架构建: 「图模型」 与 「潜在结果模型」 。具体来说,其使用基于图的准则与 do-积分来对假设进行建模并识别出非参数化的因果效应;而在估计阶段则主要基于潜在结果框架中的方法进行估计。DoWhy 的整个因果推断过程可以划分为四大步骤: 「

    2024年02月10日
    浏览(33)
  • 生态经济学领域里的R语言机器学(数据的收集与清洗、综合建模评价、数据的分析与可视化、数据的空间效应、因果推断等)

    近年来,人工智能领域已经取得突破性进展,对经济社会各个领域都产生了重大影响,结合了统计学、数据科学和计算机科学的机器学习是人工智能的主流方向之一,目前也在飞快的融入计量经济学研究。表面上机器学习通常使用大数据,而计量经济学则通常使用较小样本,

    2024年02月11日
    浏览(57)
  • 因果推断(五)基于谷歌框架Causal Impact的因果推断

    除了传统的因果推断外,还有一些机器学习框架可以使用,本文介绍来自谷歌框架的Causal Impact。该方法基于合成控制法的原理,利用多个对照组数据来构建贝叶斯结构时间序列模型,并调整对照组和实验组之间的大小差异后构建综合时间序列基线,最终预测反事实结果。 C

    2024年02月11日
    浏览(43)
  • 因果推断《Causal Inference in Python》中文笔记第1章 因果推断导论

    《Causal Inference in Python: Applying Causal Inference in the Tech Industry》因果推断啃书系列   第1章 因果推断导论   第2章 随机实验与统计学回顾   第3章 图形化因果模型   第4章 线性回归的不合理有效性   第5章 倾向分   第6章 效果异质性   第7章 元学习器   第8章

    2024年02月21日
    浏览(40)
  • 因果推断(四)断点回归(RD)

    在传统的因果推断方法中,有一种方法可以控制观察到的混杂因素和未观察到的混杂因素,这就是断点回归,因为它只需要观察干预两侧的数据,是否存在明显的断点。 ⚠️注意:当然这个方法只能做到局部随机,因此很难依据该结论推向全局。 本文参考自rdd官方示例,通

    2024年02月13日
    浏览(45)
  • 因果推断4--Causal ML(个人笔记)

    目录 1 安装教程及官方文档 1.1 pip安装 1.2 API文档 1.3 代码仓库 2 Uplift模型与主要方法介绍 2.1 发放代金券 2.2 多treatment 2.3 实验方法 3 causalml.inference.tree module 3.1 UpliftTreeClassifier 3.2 UpliftRandomForestClassifier 3.3 CausalRandomForestRegressor 4 待补充 5 问题 pip install causalml https://causalml.r

    2024年02月12日
    浏览(38)
  • 因果推断-PSM的原理及python实现

    目录 一、背景:员工技能培训真的是浪费时间吗 二、PSM的原理及python实现 1、PSM的原理 1.1 计算倾向性得分 1.2 匹配对照组样本 1.3 平衡性检查 1.4 敏感度分析 2、PSM的python实现 假设你是一家大企业的老板,你希望知道员工技能培训对员工生产率的提升有多大帮助。已知参加培

    2024年02月15日
    浏览(39)
  • 收集一些因果推断比较好的工具包,教程

    1.国内一个武汉大学教授手下博士写的基础的因果知识课件: http://www.liuyanecon.com/wp-content/uploads/%E7%8E%8B%E5%81%A520201022.pdf 感兴趣可以看看其他手下博士做的课件: Causal inference reading group 2020 – 刘岩 – 宏观金融 2.耶鲁大学教授课程全套  课件+代码+视频 代码:GitHub - paulgp/app

    2023年04月10日
    浏览(36)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包