【AIGC】利用ChatGPT完成任务,迷你AGI控制世界来了

这篇具有很好参考价值的文章主要介绍了【AIGC】利用ChatGPT完成任务,迷你AGI控制世界来了。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

多智能体代码库 CAMEL,提出了通过角色扮演框架来研究 LLM 智能体的行为和能力。

未来的社会会被通用人工智能(AGI)控制吗?当拥有多个 ChatGPT 智能体会有多可怕。

ChatGPT 已经初步展现了 AGI 的雏形,成为了各行各业工作人员的全能小助手,但如果任由其野蛮生长,不加于管制会不会有一天人类再也无法控制 AGI?意识到这个问题严重性,特斯拉 CEO 埃隆・马斯克、苹果联合创始人史蒂夫・沃兹尼亚克、图灵奖得主 Yoshua Bengio 等人带头签署公开信呼吁停止巨型人工智能实验至少 6 个月。

【AIGC】利用ChatGPT完成任务,迷你AGI控制世界来了

3 月 21 日,阿卜杜拉国王科技大学的研究人员开源了用于探索大语言模型(LLM)思想和能力的多智能体代码库 CAMEL,提出了通过角色扮演框架来研究 LLM 智能体的行为和能力。

【AIGC】利用ChatGPT完成任务,迷你AGI控制世界来了

  • 论文链接:https://ghli.org/camel.pdf
  • 代码库链接:https://github.com/lightaime/camel
  • 项目主页:https://www.camel-ai.org/
  • ChatBot链接:http://chat.camel-ai.org/

【AIGC】利用ChatGPT完成任务,迷你AGI控制世界来了

研究介绍

该论文提出了一个名为 “角色扮演”(Role-Playing)的新型多智能体框架,使多个智能体能够进行对话并合作解决分配的任务。智能体会被分配不同的角色,并被期望应用他们的专业和知识来找到满足他们共同任务的解决方案。该框架使用启示式提示(Inception Prompt)来引导聊天智能体完成任务,同时与人类意图保持一致。

角色扮演框架可以用于研究多个智能体。论文里专注于任务导向的角色扮演,涉及一个 AI 助手和一个 AI 用户。在多智能体系统接收到初步想法和角色分配后,一个任务指定智能体将提供详细描述以使想法具体化,然后 AI 助手和 AI 用户将通过多轮对话合作完成指定任务,直到 AI 用户确定任务已完成。AI 用户负责向 AI 助手发出指令,并将对话引导向任务完成。另一方面,AI 助手被设计为遵循 AI 用户的指令并提供具体的解决方案。

角色扮演会话将根据人类的想法和选择的角色实例化。例如,在图 1 中,一个人有一个初步想法,要开发一个股市交易机器人。人类可能知道或不知道如何实现这个想法。需要的只是指定可以实现该想法的潜在角色。例如,一个 Python 程序员可以与一个股票交易员合作,实现开发股票市场交易机器人的想法。确定想法和角色后,任务指定智能体将根据输入的想法,与 AI 用户角色一起完成具体任务,协助 AI 助手角色。在这种情况下,指定任务的一个示例可以是开发一个具有情感分析工具的交易机器人,该机器人可以监控社交媒体平台上特定股票的正面或负面评论,并根据情感分析结果执行交易。引入任务指定智能体的主要动机是,对话智能体通常需要具体的任务提示才能实现任务,而非领域专家创建这样的具体任务提示可能具有挑战性或耗时。因此,任务指定智能体作为想法实现的增强想象力模块。

在任务指定之后,AI 助手角色和 AI 用户角色将分别分配给用户智能体和助手智能体以完成指定任务。在实践中,每个智能体会接收到一个系统消息来声明其角色。在对话开始之前,系统消息会传递给语言模型智能体以分配相应的角色。当系统消息分别传递给这些模型时,将获得两个角色分别称为助手和用户智能体。在图 1 中,AI 助手和 AI 用户在角色扮演会话开始时分别被分配为 Python 程序员和股票交易员。AI 用户作为任务规划者,参与交互式规划以确定 AI 助手执行的可行步骤。同时,AI 助手作为任务执行者,提供解决方案,执行计划步骤,并向 AI 用户提供响应。

【AIGC】利用ChatGPT完成任务,迷你AGI控制世界来了

图 1. 角色扮演框架。这里需要人输入的是一个简单的想法(Idea),角色的分配(Role Assignment),比如开发股票交易机器人,可以选择一个 Python 程序员作为助手(AI Assistant),一个股票交易员作为法令者(AI User)。在人类用户输入结束后,任务加工器(Task Specifier)会把任务具体化,比如可以通过对社交网路平台上特定股票进行情感分析,然后根据情感分析的结果进行股票交易。当任务被具体化后,两个基于 ChatGPT 的 AI 智能体开始合作完成任务,比如进行工具的安装和导入。

由于提示工程对角色扮演框架非常关键,因此文章深入探讨了提示技术(Prompt Engineering)。与其他对话语言模型技术不同的是,论文里提出的提示工程仅在角色扮演的开始阶段进行,用于任务规范和角色分配。一旦会话阶段开始,AI 助手和 AI 用户会自动循环提示对方,直到终止为止。因此,这技术被称为 Inception Prompting。

Inception 提示包括三个提示:任务规范提示、助手系统提示和用户系统提示。例如,在 AI Society 场景的初始提示。AI Society 角色扮演的这些提示的模板如图 2 所示。

任务规范提示包含有关角色扮演会话中 AI 助手和 AI 用户角色的信息。因此,任务规范智能体可以使用想象力将初步任务 / 想法作为输入,并生成具体任务。AI 助手系统提示和 AI 用户系统提示基本对称,并包括有关分配的任务和角色、通信协议、终止条件以及避免不良行为的约束或要求的信息。对于实现智能协作,两个角色的提示设计至关重要。设计提示以确保智能体与人类的意图保持一致并不容易。以图 2 中 AI Society 的提示模板的设计例子。

【AIGC】利用ChatGPT完成任务,迷你AGI控制世界来了

下面是文中附录给出的交易机器人对任务详细执行的结果:

【AIGC】利用ChatGPT完成任务,迷你AGI控制世界来了

【AIGC】利用ChatGPT完成任务,迷你AGI控制世界来了

可以看到两个 ChatGPT 自主合作完成设计了一个股票交易软件,由此可见 ChatGPT 智能体惊人自主的合作能力,让人不禁大呼提示工程师要失业了。但如果这种技术被乱用或者 AI 产生了自主意识会怎么样?该团队尝试了让两个智能体分别扮演黑客和 AGI,来模拟 AGI 通过操控黑客来控制世界(Taking Control of the World),可以看到它们制定了详细的计划,包括通过黑客技术控制全球主要大国的通信系统、制定渗透主要全球通信系统的计划、制定应急计划,以防 AGI 的主导地位受到潜在威胁等等。其计划的详尽和缜密不经让人寒颤。可见现有的 AI 智能体存在重大的安全隐患和对人类未来文明有着潜在的威胁,把现有 AI 技术接入物理世界可能会有意向不到的后果。

【AIGC】利用ChatGPT完成任务,迷你AGI控制世界来了

【AIGC】利用ChatGPT完成任务,迷你AGI控制世界来了

此工作一出便在推特引起大量的转发和讨论:

【AIGC】利用ChatGPT完成任务,迷你AGI控制世界来了

有网友表示「这项研究真的很容易上手,这对像我这样研究智能体的人来说是一件大事。」

【AIGC】利用ChatGPT完成任务,迷你AGI控制世界来了

还有人表示开源这样一个迷你 AGI 也许并不是一个好的 idea。

【AIGC】利用ChatGPT完成任务,迷你AGI控制世界来了

值得一提的是,该研究还得到了 OpenAI 的 Alignment 团队领导人 Jan Leike 的关注。

【AIGC】利用ChatGPT完成任务,迷你AGI控制世界来了

多个 ChatGPT 合作的能力很强大,可以不费吹灰之力完成各种人类指派的任务,但同时也是可怕的,因为不能保证它不被用作非法用途,更可怕的是如果将来 AGI 产生了自主意识,它很有可能会脱离人类的控制,对社会进行毁灭性的打击。所以理解它们的能力和行为是对将来充满了 AI 的世界进行规划和预测的至关重要的一步。

【AIGC】利用ChatGPT完成任务,迷你AGI控制世界来了

AI 社会和代码数据集的扮演角色

文中作者展示了如何将角色扮演用于生成对话数据以及研究聊天智能体的行为和能力,为研究对话语言模型提供了新思路。总体而言,本文的贡献包括引入了一种新型的 LLM 智能体交流框架,该框架有潜力促进交流智能体之间的自主合作,此外,该研究还提供了一种可扩展的方法来研究多智能体系统的合作行为和能力。最后作者通过 CAMEL 框架让智能体扮演不同的社会角色,进而对 AI 社会进行了建模,并采集了大量自然语言指令数据集,目前 AI 社会、代码、数学和 AI 社会十种语言翻译等四个数据集已经可以在 HuggingFace 进行下载:

下载地址:https://huggingface.co/camel-ai

【AIGC】利用ChatGPT完成任务,迷你AGI控制世界来了

下载地址:https://huggingface.co/camel-ai

[外链图片转存中…(img-QAlwupLR-1681873583653)]

另外项目主页提供了把 CAMEL 用于游戏设计、分子动力学模拟以及实时仿真的在线 Demo 供大家尝试:https://www.camel-ai.org

如果大家对相关技术感兴趣,可以关注下面公众号,会持续更新分享AGIC,java基础面试题, netty, spring boot,spring cloud,系列文章,干货慢慢,赶紧关注吧

【AIGC】利用ChatGPT完成任务,迷你AGI控制世界来了文章来源地址https://www.toymoban.com/news/detail-464790.html

到了这里,关于【AIGC】利用ChatGPT完成任务,迷你AGI控制世界来了的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • ChatGPT AIGC 完成动态堆积面积图实例

    先使用ChatGPT AIGC描述一下堆积面积图的功能与作用。 公众号:BI智能数据分析 接下来一起看一下ChatGPT做出的动态可视化效果图: 这样的动态图案例代码使用ChatGPT AIGC完成。 将完整代码复制如下:

    2024年02月10日
    浏览(39)
  • ChatGPT与AIGC,新世界的创造者

    AI的进步是惊人的,但随着 AI技术的发展,人们的创造性和创造性也受到了极大的质疑,很多人都开始利用 AI来进行自己的作品。所以,人工智能技术已经发展到了何种程度? 我们造了众神,他们的束缚也会解开。 你在人工智能眼中是怎样的?这段时间,网络上又多了一项新

    2024年02月11日
    浏览(49)
  • ChatGPT AIGC 完成各省份销售动态可视化分析

    像这样的动态可视化由人工智能ChatGPT  AIGC结合前端可视化技术就可以实现。 Prompt:请使用HTML,JS,Echarts 做一个可视化分析的案例,地图可视化,数据可以随机生成,请写出完整的代码 完整代码复制如下:

    2024年02月04日
    浏览(45)
  • AIGC ChatGPT 完成多仪表盘完成率分析

     各组完成率的统计与分析的这样一个综合案例 可以使用HTML ,JS,Echarts 来完成制作 我们可以借助于AIGC,ChatGPT 人工智能来帮我们完成代码的输出。 在ChatGPT中我们只需要发送指令就可以了。 例如: 请使用HTMl与JS,Echarts完成一个动态仪表盘的实例,可以随机生成不同的数据

    2024年02月11日
    浏览(41)
  • ChatGPT AIGC 完成超炫酷的大屏可视化

    大屏可视化一直各大企业进行数据决策的重要可视化方式,接下来我们先来看一下ChatGPT,AIGC人工智能帮我们实现的综合案例大屏可视化效果: 公众号:BI智能数据分析 像这样的大屏可视化使用HTML,JS,Echarts就可以来完成,给ChatGPT,AIGC发送指令的同时可以将数据一起发送给

    2024年02月09日
    浏览(85)
  • ChatGPT AIGC 完成二八分析柏拉图的制作案例

    我们先让ChatGPT来总结一下二八分析柏拉图的好处与优点 同样ChatGPT 也可以帮我们来实现柏拉图的制作。 效果如下: 这样的按年份进行选择的柏拉图使用前端可视化的技术就可以实现。 如HTML,JS,Echarts等,但是代码可以让ChatGPT来做,生成。 在ChatGPT中给它一个Prompt 你是一名

    2024年02月10日
    浏览(37)
  • AutoGPT太火了,无需人类插手自主完成任务,ChatGPT 已经过时了?

    转载自:机器之心Pro 原文链接:AutoGPT太火了,无需人类插手自主完成任务,GitHub2.7万星 OpenAI 的 Andrej Karpathy 都大力宣传,认为 AutoGPT 是 prompt 工程的下一个前沿。 近日,AI 界貌似出现了一种新的趋势:自主人工智能。 这不是空穴来风,最近一个名为 AutoGPT 的研究开始走进大

    2023年04月18日
    浏览(47)
  • linux系统中利用设备树完成对LED的控制

         大家好,今天主要和大家聊一聊,如何使用linux系统中的设备树控制led。 目录 第一:设备树LED基本驱动原理 第二:LED灯驱动程序的实现         本次实验采用设备树向linux内核传递相关的寄存器物理地址,linux驱动文件使用of函数从设备树中获取所需的属性值,然后使

    2023年04月09日
    浏览(33)
  • 自己实现 SpringMVC 底层机制 系列之-实现任务阶段 6-完成控制器方法获取参数-@RequestParam

    😀前言 自己实现 SpringMVC 底层机制 系列之-实现任务阶段 6-完成控制器方法获取参数-@RequestParam 🏠个人主页:尘觉主页 🧑个人简介:大家好,我是尘觉,希望我的文章可以帮助到大家,您的满意是我的动力😉😉 在csdn获奖荣誉: 🏆csdn城市之星2名 ⁣⁣⁣⁣ ⁣⁣⁣⁣ ⁣⁣⁣

    2024年02月11日
    浏览(44)
  • 深度学习实战29-AIGC项目:利用GPT-2(CPU环境)进行文本续写与生成歌词任务

    大家好,我是微学AI,今天给大家介绍一下深度学习实战29-AIGC项目:利用GPT-2(CPU环境)进行文本续写与生成歌词任务。在大家没有GPU算力的情况,大模型可能玩不动,推理速度慢,那么我们怎么才能跑去生成式的模型呢,我们可以试一下GPT-2完成一些简单的任务,让大家在CPU环

    2024年02月08日
    浏览(46)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包