qt中的信号与槽

这篇具有很好参考价值的文章主要介绍了qt中的信号与槽。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

连接形式

connect有好几种形式

static QMetaObject::Connection connect(const QObject *sender, const char *signal, const QObject *receiver, const char *member, Qt::ConnectionType = Qt::AutoConnection);

static QMetaObject::Connection connect(const QObject *sender, const QMetaMethod &signal, const QObject *receiver, const QMetaMethod &method, Qt::ConnectionType type = Qt::AutoConnection);

inline QMetaObject::Connection connect(const QObject *sender, const char *signal, const char *member, Qt::ConnectionType type = Qt::AutoConnection) const;

连接方式有

连接类型 说明
Qt::AutoConnection 如果发送者和接收者在同一线程,使用Qt::DirectConnection,否则使用Qt::QueuedConnection
Qt::DirectConnection 信号被发射时立即执行,信号和槽函数在同一线程
Qt::QueuedConnection 在事件循环回到接收者线程后执行槽函数,信号和槽函数不在同一线程
Qt::BlockingQueuedConnection 信号线程会阻塞直到槽函数执行完毕,当信号与槽函数在同一线程时,不能使用这种方式
Qt::UniqueConnection 表示不能重复连接信号和槽

涉及到的宏

# define SLOT(a)     "1"#a
# define SIGNAL(a)   "2"#a

connect底层到底做了什么呢?
其实际上添加发送者对应信号索引的监听器列表中

QObjectPrivate::Connection *QMetaObjectPrivate::connect(const QObject *sender,
                                 int signal_index, const QMetaObject *smeta,
                                 const QObject *receiver, int method_index,
                                 const QMetaObject *rmeta, int type, int *types)
{
    QObject *s = const_cast<QObject *>(sender);
    QObject *r = const_cast<QObject *>(receiver);

    int method_offset = rmeta ? rmeta->methodOffset() : 0;
    Q_ASSERT(!rmeta || QMetaObjectPrivate::get(rmeta)->revision >= 6);
    QObjectPrivate::StaticMetaCallFunction callFunction = rmeta ? rmeta->d.static_metacall : nullptr;

    QOrderedMutexLocker locker(signalSlotLock(sender),
                               signalSlotLock(receiver));

    QObjectPrivate::ConnectionData *scd  = QObjectPrivate::get(s)->connections.loadRelaxed();
    if (type & Qt::UniqueConnection && scd) {
        if (scd->signalVectorCount() > signal_index) {
            const QObjectPrivate::Connection *c2 = scd->signalVector.loadRelaxed()->at(signal_index).first.loadRelaxed();

            int method_index_absolute = method_index + method_offset;

            while (c2) {
                if (!c2->isSlotObject && c2->receiver.loadRelaxed() == receiver && c2->method() == method_index_absolute)
                    return nullptr;
                c2 = c2->nextConnectionList.loadRelaxed();
            }
        }
        type &= Qt::UniqueConnection - 1;
    }

    std::unique_ptr<QObjectPrivate::Connection> c{new QObjectPrivate::Connection};
    c->sender = s;
    c->signal_index = signal_index;
    c->receiver.storeRelaxed(r);
    QThreadData *td = r->d_func()->threadData;
    td->ref();
    c->receiverThreadData.storeRelaxed(td);
    c->method_relative = method_index;
    c->method_offset = method_offset;
    c->connectionType = type;
    c->isSlotObject = false;
    c->argumentTypes.storeRelaxed(types);
    c->callFunction = callFunction;

    QObjectPrivate::get(s)->addConnection(signal_index, c.get());

    locker.unlock();
    QMetaMethod smethod = QMetaObjectPrivate::signal(smeta, signal_index);
    if (smethod.isValid())
        s->connectNotify(smethod);

    return c.release();
}

void QObjectPrivate::addConnection(int signal, Connection *c)
{
    Q_ASSERT(c->sender == q_ptr);
    ensureConnectionData();
    ConnectionData *cd = connections.loadRelaxed();
    cd->resizeSignalVector(signal + 1);

    ConnectionList &connectionList = cd->connectionsForSignal(signal);
    if (connectionList.last.loadRelaxed()) {
        Q_ASSERT(connectionList.last.loadRelaxed()->receiver.loadRelaxed());
        connectionList.last.loadRelaxed()->nextConnectionList.storeRelaxed(c);
    } else {
        connectionList.first.storeRelaxed(c);
    }
    c->id = ++cd->currentConnectionId;
    c->prevConnectionList = connectionList.last.loadRelaxed();
    connectionList.last.storeRelaxed(c);

    QObjectPrivate *rd = QObjectPrivate::get(c->receiver.loadRelaxed());
    rd->ensureConnectionData();

    c->prev = &(rd->connections.loadRelaxed()->senders);
    c->next = *c->prev;
    *c->prev = c;
    if (c->next)
        c->next->prev = &c->next;
}

在添加连接设置连接对象时,将isSlotObject设置为false,callFunction设置为接收对象元对象的static_metacall

QObjectPrivate::StaticMetaCallFunction callFunction = rmeta ? rmeta->d.static_metacall : nullptr;

在doActivate调用时就会走callFunction分支

什么时候会触发接收者的调用

在emit 触发信号时。
moc(元对象编译器)在处理定义有SIGNALS的类时,会针对定义的信号生成对应的处理函数,在内部会调用QMetaObject::active方法,其定义为

void QMetaObject::activate(QObject *sender, const QMetaObject *m, int local_signal_index,
                           void **argv)
{
    int signal_index = local_signal_index + QMetaObjectPrivate::signalOffset(m);

    if (Q_UNLIKELY(qt_signal_spy_callback_set.loadRelaxed()))
        doActivate<true>(sender, signal_index, argv);
    else
        doActivate<false>(sender, signal_index, argv);
}

doActivate会从发送者的信号索引取出连接列表,调用处理函数
对于 Qt::AutoConnection,会判断发送线程和接收处理线程是否在同一线程,如果在同一线程,QMetaObject::metacall作同步调用,否则生成QMetaCallEvent发送qt的事件处理线程中
对于 Qt::DirectConnection, QMetaObject::metacall作同步调用
对于Qt::QueuedConnection,直接生成QMetaCallEvent发送qt的事件处理线程中
对于Qt::BlockingQueuedConnection,如果发现发送线程和接收处理线程是在同一线程,输出告警日志,会使用信号量QSemaphore,生成QMetaCallEvent发送qt的事件处理线程中等待处理结果文章来源地址https://www.toymoban.com/news/detail-465009.html

template <bool callbacks_enabled>
void doActivate(QObject *sender, int signal_index, void **argv)
{
    QObjectPrivate *sp = QObjectPrivate::get(sender);

    if (sp->blockSig)
        return;

    if (sp->isDeclarativeSignalConnected(signal_index)
            && QAbstractDeclarativeData::signalEmitted) {
        Q_TRACE_SCOPE(QMetaObject_activate_declarative_signal, sender, signal_index);
        QAbstractDeclarativeData::signalEmitted(sp->declarativeData, sender,
                                                signal_index, argv);
    }

    const QSignalSpyCallbackSet *signal_spy_set = callbacks_enabled ? qt_signal_spy_callback_set.loadAcquire() : nullptr;

    void *empty_argv[] = { nullptr };
    if (!argv)
        argv = empty_argv;

    if (!sp->maybeSignalConnected(signal_index)) {
        // The possible declarative connection is done, and nothing else is connected
        if (callbacks_enabled && signal_spy_set->signal_begin_callback != nullptr)
            signal_spy_set->signal_begin_callback(sender, signal_index, argv);
        if (callbacks_enabled && signal_spy_set->signal_end_callback != nullptr)
            signal_spy_set->signal_end_callback(sender, signal_index);
        return;
    }

    if (callbacks_enabled && signal_spy_set->signal_begin_callback != nullptr)
        signal_spy_set->signal_begin_callback(sender, signal_index, argv);

    bool senderDeleted = false;
    {
    Q_ASSERT(sp->connections.loadAcquire());
    QObjectPrivate::ConnectionDataPointer connections(sp->connections.loadRelaxed());
    QObjectPrivate::SignalVector *signalVector = connections->signalVector.loadRelaxed();

    const QObjectPrivate::ConnectionList *list;
    if (signal_index < signalVector->count())
        list = &signalVector->at(signal_index);
    else
        list = &signalVector->at(-1);

    Qt::HANDLE currentThreadId = QThread::currentThreadId();
    bool inSenderThread = currentThreadId == QObjectPrivate::get(sender)->threadData->threadId.loadRelaxed();

    // We need to check against the highest connection id to ensure that signals added
    // during the signal emission are not emitted in this emission.
    uint highestConnectionId = connections->currentConnectionId.loadRelaxed();
    do {
        QObjectPrivate::Connection *c = list->first.loadRelaxed();
        if (!c)
            continue;

        do {
            QObject * const receiver = c->receiver.loadRelaxed();
            if (!receiver)
                continue;

            QThreadData *td = c->receiverThreadData.loadRelaxed();
            if (!td)
                continue;

            bool receiverInSameThread;
            if (inSenderThread) {
                receiverInSameThread = currentThreadId == td->threadId.loadRelaxed();
            } else {
                // need to lock before reading the threadId, because moveToThread() could interfere
                QMutexLocker lock(signalSlotLock(receiver));
                receiverInSameThread = currentThreadId == td->threadId.loadRelaxed();
            }


            // determine if this connection should be sent immediately or
            // put into the event queue
            if ((c->connectionType == Qt::AutoConnection && !receiverInSameThread)
                || (c->connectionType == Qt::QueuedConnection)) {
                queued_activate(sender, signal_index, c, argv);
                continue;
#if QT_CONFIG(thread)
            } else if (c->connectionType == Qt::BlockingQueuedConnection) {
                if (receiverInSameThread) {
                    qWarning("Qt: Dead lock detected while activating a BlockingQueuedConnection: "
                    "Sender is %s(%p), receiver is %s(%p)",
                    sender->metaObject()->className(), sender,
                    receiver->metaObject()->className(), receiver);
                }
                QSemaphore semaphore;
                {
                    QBasicMutexLocker locker(signalSlotLock(sender));
                    if (!c->receiver.loadAcquire())
                        continue;
                    QMetaCallEvent *ev = c->isSlotObject ?
                        new QMetaCallEvent(c->slotObj, sender, signal_index, argv, &semaphore) :
                        new QMetaCallEvent(c->method_offset, c->method_relative, c->callFunction,
                                           sender, signal_index, argv, &semaphore);
                    QCoreApplication::postEvent(receiver, ev);
                }
                semaphore.acquire();
                continue;
#endif
            }

            QObjectPrivate::Sender senderData(receiverInSameThread ? receiver : nullptr, sender, signal_index);

            if (c->isSlotObject) {
                c->slotObj->ref();

                struct Deleter {
                    void operator()(QtPrivate::QSlotObjectBase *slot) const {
                        if (slot) slot->destroyIfLastRef();
                    }
                };
                const std::unique_ptr<QtPrivate::QSlotObjectBase, Deleter> obj{c->slotObj};

                {
                    Q_TRACE_SCOPE(QMetaObject_activate_slot_functor, obj.get());
                    obj->call(receiver, argv);
                }
            } else if (c->callFunction && c->method_offset <= receiver->metaObject()->methodOffset()) {
                //we compare the vtable to make sure we are not in the destructor of the object.
                const int method_relative = c->method_relative;
                const auto callFunction = c->callFunction;
                const int methodIndex = (Q_HAS_TRACEPOINTS || callbacks_enabled) ? c->method() : 0;
                if (callbacks_enabled && signal_spy_set->slot_begin_callback != nullptr)
                    signal_spy_set->slot_begin_callback(receiver, methodIndex, argv);

                {
                    Q_TRACE_SCOPE(QMetaObject_activate_slot, receiver, methodIndex);
                    callFunction(receiver, QMetaObject::InvokeMetaMethod, method_relative, argv);
                }

                if (callbacks_enabled && signal_spy_set->slot_end_callback != nullptr)
                    signal_spy_set->slot_end_callback(receiver, methodIndex);
            } else {
                const int method = c->method_relative + c->method_offset;

                if (callbacks_enabled && signal_spy_set->slot_begin_callback != nullptr) {
                    signal_spy_set->slot_begin_callback(receiver, method, argv);
                }

                {
                    Q_TRACE_SCOPE(QMetaObject_activate_slot, receiver, method);
                    QMetaObject::metacall(receiver, QMetaObject::InvokeMetaMethod, method, argv);
                }

                if (callbacks_enabled && signal_spy_set->slot_end_callback != nullptr)
                    signal_spy_set->slot_end_callback(receiver, method);
            }
        } while ((c = c->nextConnectionList.loadRelaxed()) != nullptr && c->id <= highestConnectionId);

    } while (list != &signalVector->at(-1) &&
        //start over for all signals;
        ((list = &signalVector->at(-1)), true));

        if (connections->currentConnectionId.loadRelaxed() == 0)
            senderDeleted = true;
    }
    if (!senderDeleted) {
        sp->connections.loadRelaxed()->cleanOrphanedConnections(sender);

        if (callbacks_enabled && signal_spy_set->signal_end_callback != nullptr)
            signal_spy_set->signal_end_callback(sender, signal_index);
    }
}

到了这里,关于qt中的信号与槽的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • QT 信号与槽

     .h文件 .cpp文件 现象

    2024年02月02日
    浏览(39)
  • 2、QT的信号与槽

    connect(信号的发送者,SIGNAL(信号名称),信号的接收者,SLOT(槽函数)); QT 4 的写法 QT 5的写法 控件生成信号定义: ①、在需要接收信号的类中 声明槽函数 ②、在xxx.cpp 中实现槽函数 ③、进行信号与槽的关联 用户自定义信号: ①、在信号的发送者类中声明信号 ②、关联信号与槽

    2024年02月10日
    浏览(41)
  • QT的核心——信号与槽

    目录 回顾C 语言信号 1、信号与槽 2、关联信号与槽 2.1自动关联信号与槽 2.2手动关联信号与槽 2.3断开信号与槽 3、自定义信号 3.1自定义信号使用条件 3.2自定义槽函数使用条件 4、信号与槽参数传递 4.1自定义一个带参的信号 4.2关联带参的信号与槽 4.3发送一个带参的信号 5、信

    2024年02月12日
    浏览(47)
  • QT基础【5-信号与槽】

    🌈个人主页:godspeed_lucip 🔥 系列专栏:QT从基础到进阶 推荐使用这种写法,信号名字、槽函数名字写错了,编译器会直接报错 参数解释: 第一个参数:信号的发出者 第二个参数:发出的信号 第三个参数:信号的接受者 第四个参数:处理的槽函数 效果: 信号槽机制不只在

    2024年02月21日
    浏览(41)
  • 嵌入式QT (Qt 信号与槽)

    因为有了信号与槽的编程机制,在 Qt 中处理界面各个组件的交互操作时变得更加直观和简单。 信号 (Signal)就是在特定情况下被发射的事件。 GUI 程序设计的主要内容就是对界面上各组件的信号的响应,只需要知道什么情况下发射哪些信号,合理地去响应和处理这些信号就

    2024年02月02日
    浏览(48)
  • Qt——Qt工作原理:事件驱动、信号与槽机制

    Qt作为一个现代的GUI(图形用户界面)框架,采用了事件驱动的编程范式,并引入了信号与槽机制,以实现高度交互和松耦合的程序设计。下面详细解释了相关概念,以及如何在Qt中使用它们。 事件是在GUI应用程序中的控件上产生的各种动作、操作或状态变化,例如鼠标移动

    2024年02月10日
    浏览(42)
  • Qt 之 QPushButton,信号与槽机制

    当我们开发基于Qt框架的图形用户界面(GUI)应用程序时,经常需要在界面上添加按钮来实现用户交互。Qt提供了一个名为 QPushButton 的类作为按钮控件的实现。QPushButton是Qt中的标准按钮类,旨在简化按钮的创建和使用。 头文件 :#include QPushButton QPushButton 用于 接受用户点击事

    2024年02月12日
    浏览(46)
  • C++ Qt开发:如何使用信号与槽

    在Qt中,信号与槽(Signal and Slot)是一种用于对象之间通信的机制。是Qt框架引以为傲的一项机制,它带来了许多优势,使得Qt成为一个强大且灵活的开发框架之一。信号与槽的关联通过 QObject::connect 函数完成。这样的机制使得对象能够以一种灵活而松散耦合的方式进行通信,

    2024年02月05日
    浏览(43)
  • QT信号与槽的第五个参数

    1、Qt::AutoConnection: 默认值,使用这个值则连接类型会在信号发送时决定。如果接收者和发送者在同一个线程,则自动使用Qt::DirectConnection类型。如果接收者和发送者不在一个线程,则自动使用Qt::QueuedConnection类型。 2、Qt::DirectConnection:槽函数会在信号发送的时候直接被调用,

    2024年02月13日
    浏览(48)
  • QT--day2(信号与槽,多界面跳转)

     第一个界面头文件: 第一个界面源文件: 第二个界面头文件: 第二个界面源文件: 测试文件: 效果:    

    2024年02月15日
    浏览(50)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包