2023 年十大目标检测模型!

这篇具有很好参考价值的文章主要介绍了2023 年十大目标检测模型!。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

2023 年十大目标检测模型!

使用深度学习革新对象检测的综合指南。

2023 年十大目标检测模型!

 对象检测示例

“目标检测是计算机视觉中最令人兴奋和最具挑战性的问题之一,而深度学习已成为解决它的强大工具。” 

象检测是计算机视觉中的一项基本任务,涉及识别和定位图像中的对象。深度学习彻底改变了对象检测,可以更准确、更高效地检测图像和视频中的对象。到 2023 年,有几种深度学习模型在目标检测方面取得了重大进展。以下是 2023 年用于对象检测的十大深度学习模型:

1.YOLOv7

YOLOv7或 You Only Look Once version-7,是用于对象检测的最先进的深度学习模型。YOLOv7 基于原始的 YOLO 架构,但使用了更高效的主干网络和一组新的检测头。YOLOv7 可以高精度地实时检测物体,并且可以在大型数据集上进行训练。该模型也非常高效,可以在低端设备上运行。

优点:

  • 非常快速和高效的物体检测
  • 大型数据集的高精度
  • 在低端设备上运行

缺点:

  • 可以与小物体检测斗争
  • 需要大型数据集才能获得最佳性能

2. EfficientDet

EfficientDet是一种用于对象检测的深度学习模型,它使用高效的主干网络和一组新的检测头。EfficientDet 旨在高效准确地实时检测物体,准确度高。该模型在多个基准数据集上取得了最先进的结果,并且可以在大型数据集上进行训练。

优点:

  • 在多个基准数据集上的最先进性能
  • 高效准确的物体检测
  • 可以在大型数据集上进行训练

缺点:

  • 需要大量的计算资源
  • 在较小的数据集上进行训练可能具有挑战性

3. RetinaNet

RetinaNet是一种用于对象检测的深度学习模型,它使用特征金字塔网络和新的焦点损失函数。RetinaNet 旨在解决对象检测中前景和背景示例之间的不平衡问题,从而提高准确性。该模型效率高,可以在低端设备上运行,使其成为实时对象检测的热门选择。

优点:

  • 提高物体检测的准确性
  • 高效,可以在低端设备上运行
  • 易于训练和使用

缺点:

  • 可以与小物体检测斗争
  • 需要大量数据以获得最佳性能

4. Faster R-CNN

Faster R-CNN是一种用于对象检测的深度学习模型,它使用区域建议网络生成候选对象位置。然后该模型使用第二个网络对建议的区域进行分类并优化它们的位置。Faster R-CNN 以其高精度而著称,通常用于图像和视频中的对象检测。

优点:

  • 高精度物体检测
  • 对图像和视频中的物体检测有效
  • 易于训练和使用

缺点:

  • 计算量可能很大
  • 实时检测物体时可能会很慢

5. Mask R-CNN

Mask R-CNN是一种用于对象检测的深度学习模型,它扩展了 Faster R-CNN 以预测对象掩码。该模型使用第三个网络为每个检测到的对象生成像素级掩码。Mask R-CNN 以其在对象检测方面的高精度而著称,也可用于实例分割。

优点:

  • 物体检测和实例分割的高精度
  • 可以为每个检测到的对象生成像素级掩码
  • 易于训练和使用

缺点:

  • 计算量可能很大
  • 实时检测物体时可能会很慢

6. CenterNet

CenterNet是一种用于对象检测的深度学习模型,它使用热图来预测每个对象的中心。然后该模型使用第二个网络来预测对象的大小和方向。CenterNet 以其在目标检测方面的高精度和高效性而著称,并在多个基准数据集上取得了最先进的结果。

优点:

  • 在多个基准数据集上的最先进性能
  • 物体检测的高精度和高效率
  • 可以处理被遮挡的小物体

缺点:

  • 计算量可能很大
  • 可以与高度重叠的对象作斗争

7. DETR

DETR或 Detection Transformer 是一种用于对象检测的深度学习模型,它使用基于 transformer 的架构。该模型使用集合预测方法同时预测每个对象的类别和位置。DETR 以其高精度和简单性而著称,因为它不需要锚框或非最大抑制。

优点:

  • 物体检测的高精度和简单性
  • 可以处理高度重叠的对象
  • 不需要锚框或非最大抑制

缺点:

  • 计算量可能很大
  • 需要大量数据以获得最佳性能

8. Cascade R-CNN

Cascade R-CNN是一种用于对象检测的深度学习模型,它使用 R-CNN 网络的级联来提高对象检测的准确性。该模型在级联的每个阶段逐渐减少误报和漏报的数量。Cascade R-CNN 以其高精度着称,并在多个基准数据集上取得了最先进的结果。

优点:

  • 在多个基准数据集上的最先进性能
  • 高精度物体检测
  • 可以处理小的和被遮挡的物体

缺点:

  • 计算量可能很大
  • 需要大量数据以获得最佳性能

9. Single Shot MultiBox Detector

SSD或 Single Shot MultiBox Detector 是一种用于对象检测的深度学习模型,它使用单个网络来预测对象位置和类别。该模型使用特征金字塔网络来检测不同尺度的物体,并在物体检测中实现了高精度。SSD 还以效率着称,可以在低端设备上实时运行。

优点:

  • 物体检测的高精度和高效率
  • 低端设备上的实时对象检测
  • 易于训练和使用

缺点:

  • 可以与小物体检测斗争
  • 可能需要大型数据集才能获得最佳性能

10.FCOS

FCOS,即全卷积单阶段对象检测,是一种用于对象检测的深度学习模型,它使用全卷积架构来预测每个对象的类别和位置。该模型高效且准确,在多个基准数据集上取得了最先进的结果。FCOS 也以其简单性着称,因为它不需要锚框或非最大抑制。

优点:

  • 在多个基准数据集上的最先进性能
  • 物体检测的高精度和高效率
  • 不需要锚框或非最大抑制

缺点:

  • 计算量可能很大
  • 可能需要大型数据集才能获得最佳性能

目标检测是计算机视觉中的一项基本任务,在现实世界中有许多应用。深度学习模型彻底改变了物体检测领域,实现了前所未有的准确性和效率水平。上面列出的 2023 年用于对象检测的 10 大深度学习模型突出了该领域一些最有前途和创新的模型。然而,需要注意的是每个模型都有其优点和缺点,模型的选择将取决于手头任务的具体要求。随着深度学习模型的不断发展和完善,我们可以期待在不久的将来在目标检测领域取得更令人瞩目的成果。文章来源地址https://www.toymoban.com/news/detail-465301.html

到了这里,关于2023 年十大目标检测模型!的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 开集目标检测-标签提示目标检测大模型(吊打YOLO系列-自动化检测标注)

    大多数现有的对象检测模型都经过训练来识别一组有限的预先确定的类别。将新类添加到可识别对象列表中需要收集和标记新数据,并从头开始重新训练模型,这是一个耗时且昂贵的过程。该大模型的目标是开发一个强大的系统来检测由人类语言输入指定的任意对象,而无需

    2024年01月23日
    浏览(62)
  • 目标检测——SSD模型介绍

    PriorBox层先验框的生成方法 loc的预测结果

    2024年02月16日
    浏览(40)
  • 目标检测 - RCNN系列模型

    论文:Rich feature hierarchies for accurate object detection and semantic segmentation 地址:https://arxiv.org/abs/1311.2524 分为两个阶段: 目标候选框 Object Proposals Proposals缩放后放入CNN网络 目标候选框的实现:区域提案方法(Extract region proposals):使用选择性搜索selective search提取2000个候选区域,

    2024年01月23日
    浏览(35)
  • 【mmdetection小目标检测教程】四、修改配置文件,训练专属于你的目标检测模型

    在前面我们已经搭建了环境、完成了高分辨率图片切分成小图,本文将介绍如何使用mmdetection配置文件训练检测模型 mmdetection小目标检测系列教程: 一、openmmlab基础环境搭建(含mmcv、mmengine、mmdet的安装) 二、labelimg标注文件voc格式转coco格式 三、使用sahi库切分高分辨率图片

    2024年02月13日
    浏览(44)
  • YOLOv7如何提高目标检测的速度和精度,基于模型结构提高目标检测速度

    目标检测是计算机视觉领域中的一个重要任务,它的主要目标是在图像或视频中准确地定位和识别特定目标。目标检测算法的速度和精度是衡量其性能的两个重要指标,它们通常是相互矛盾的。在实际应用中,我们需要在速度和精度之间进行权衡,选择适合实际需求的算法。

    2023年04月23日
    浏览(60)
  • 【目标检测】yolov5模型详解

    yolov5于2020年由glenn-jocher首次提出,直至今日yolov5仍然在不断进行升级迭代。 Yolov5有YOLOv5s、YOLOv5m、YOLOv5l、YOLOv5x四个版本。文件中,这几个模型的结构基本一样,不同的是depth_multiple模型深度和width_multiple模型宽度这两个参数。 yolov5主要分为以下几部分: Input:输入 Backbone:

    2024年02月07日
    浏览(52)
  • YOLOV7 目标检测模型调试记录

    YOLO系列在目标检测领域可谓名声赫赫,其性能表现不俗,如今其已经更新到了YOLOV7版本,今天便来一睹其风采。 博主之前只是对YOLO算法的原理一知半解,并未实验,因此并不熟练,因此,借此机会来进行实验以为日后的论文撰写做好准备。 看一下YOLOV7X的网络结构: 首先是

    2024年02月03日
    浏览(40)
  • 【目标检测】YOLOv5:模型构建解析

    最近在看一些目标检测的最新论文和代码,大多数都是在YOLOv5的基础上进行魔改。 改的最多的基本是原版本的网络结构,这篇博文就从源码角度来解析YOLOv5中,模型是如何构建出来的。 本文使用的是YOLOv5-5.0版本。 在YOLOv5中,模型结构基本是写在了 .yaml 中,5.0版本的YOLOv5共

    2024年02月06日
    浏览(90)
  • 旋转目标检测【1】如何设计深度学习模型

    平常的目标检测是 平行的矩形框 ,“ 方方正正 ”的;但对于一些特殊场景(遥感), 需要倾斜的框,才能更好贴近物体 ,旋转目标检测来啦~ 常见的水平框参数表达方式为(x,y,w,h),四个参数分别表示水平框中心的横纵坐标、宽度以及高度。常用的YOLOv5也是用这边表示方

    2024年02月06日
    浏览(48)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包