36、RK3399Pro 环境搭建和Yolov5 c++调用opencv进行RKNN模型部署和使用

这篇具有很好参考价值的文章主要介绍了36、RK3399Pro 环境搭建和Yolov5 c++调用opencv进行RKNN模型部署和使用。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

基本思想:记录rk3399 pro配置环境和c++ npu开发记录,主要想搞一份c++代码和其它图像算法结合一下,好进行部署,淘宝链接见附录

36、RK3399Pro 环境搭建和Yolov5 c++调用opencv进行RKNN模型部署和使用36、RK3399Pro 环境搭建和Yolov5 c++调用opencv进行RKNN模型部署和使用

 需要的python3.7对应的aarch64的whl包:包含opencv-whl 、h5py-whl包:

链接: https://pan.baidu.com/s/1cvCAmHBa_4KgEjrcFIYnig 提取码: 5ui4

链接: https://pan.baidu.com/s/1hrcr8Fc2sboD1_uy8T1Z8Q 提取码: e4wq

第一步:因为系统是python3.8,因为官方没有提供python3.8的rknn的版本,需要安装anconda环境构建python3.6 文章来源地址https://www.toymoban.com/news/detail-465744.html

ubuntu@ubuntu:~$ ssh firefly@192.168.85.45
firefly@10.10.85.75's password: 
 _____ _           __ _       
|  ___(_)_ __ ___ / _| |_   _ 
| |_  | | '__/ _ \ |_| | | | |
|  _| | | | |  __/  _| | |_| |
|_|   |_|_|  \___|_| |_|\__, |
                        |___/ 
Welcome to Ubuntu 20.04.3 LTS (GNU/Linux 4.4.194 aar

到了这里,关于36、RK3399Pro 环境搭建和Yolov5 c++调用opencv进行RKNN模型部署和使用的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • YOLOv5——pytorch环境搭建

    环境搭建是一个最最基础而又基本的事情,是一切工作开始前的基本要求。 由于YOLOv7和YOLOv5不兼容,这次用到了YOLOv5,我不得不再使用anaconda创建一个虚拟环境。 Tip:很多人不了解Anaconda存在的意义,就是为了弥补python多版本不兼容问题(在安装过程中,我们不难发现,总是

    2024年02月17日
    浏览(38)
  • Yolov5环境搭建+运行过程

    目录 前言 一、工具资源下载 二、搭建环境配置和运行测试 1.安装anaconda,并创建环境 2.使用pycharm  3.安装pytorch1.5.1以及其他库 4.测试 总结 这是我个人在使用yolov5过程中的一些心得,搭建环境就让我爆炸,最后也是成功运行起来。其中也参考了很多其他人博客的文章,记录下

    2024年02月12日
    浏览(44)
  • 【学习笔记】Yolov5调用手机摄像头实时检测(环境配置+实现步骤)

    我们需要首先从GitHub获取到yolov5的源码,直达链接如下: https://github.com/ultralytics/yolov5 打开后按照如下步骤下载源码压缩包即可 权重文件下载地址:https://download.csdn.net/download/liujiahao123987/87400892 注:我用的iOS,安卓版本没有\\\"Lite\\\" 需要的就是这个局域网,每个人的都不一样 需

    2023年04月25日
    浏览(53)
  • 用Docker搭建yolov5开发环境

    下面是使用Docker搭建yolov5开发环境的详细步骤: 如果你的电脑上还没有安装Docker,可以按照Docker官网的说明进行安装。 在开始之前,需要先将yolov5的代码下载到本地。可以使用以下命令将代码克隆到本地: git clone https://github.com/ultralytics/yolov5.git 在yolov5的代码目录下,有一个

    2024年02月15日
    浏览(40)
  • YOLOv5 实例分割 用 OPenCV DNN C++ 部署

    如果之前从没接触过实例分割,建议先了解一下实例分割的输出是什么。 实例分割两个关键输出是:mask系数、mask原型 本文参考自该项目(这么优秀的代码当然要给star!):GitHub - UNeedCryDear/yolov5-seg-opencv-onnxruntime-cpp: yolov5 segmentation with onnxruntime and opencv 目录 Pre: 一、代码总结

    2024年02月12日
    浏览(35)
  • C++模型部署:qt+yolov5/6+onnxruntime+opencv

    作者平时主要是写 c++ 库的,界面方面了解不多,也没有发现“美”的眼镜,界面有点丑,大家多包涵。 本次介绍的项目主要是通过 cmake 构建一个 基于 c++ 语言的,以 qt 为框架的,包含 opencv 第三方库在内的,跨平台的,使用 ONNX RUNTIME 进行前向推理的 yolov5/6 演示平台。文章

    2024年02月05日
    浏览(51)
  • Opencv C++实现yolov5部署onnx模型完成目标检测

    头文件 命名空间 结构体 Net_config 里面存了三个阈值和模型地址,其中 置信度 ,顾名思义,看检测出来的物体的精准度。以测量值为中心,在一定范围内,真值出现在该范围内的几率。 endsWith()函数 判断sub是不是s的子串 anchors_640图像接收数组 根据图像大小,选择相应长度的

    2024年02月13日
    浏览(41)
  • 2021.11.01 c++下 opencv部署yolov5-6.0版本 (四)

    ----2022.10.10 更新yolov5-seg实例分割模型: 2022.09.29更新 c++下面使用opencv部署yolov5和yolov7实例分割模型(六)_爱晚乏客游的博客-CSDN博客  -----2022.07.25 更新了下yolov7的部署,有需要的自取 2022.07.25 C++下使用opencv部署yolov7模型(五)_爱晚乏客游的博客-CSDN博客 此篇文章针对yolov5的

    2024年02月04日
    浏览(47)
  • yolov5画框重复、大框包小框问题解决,c++、python代码调用onnx

    yolov5在训练完成后,获取模型(pt)文件,或者转为onnx文件,对图片进行推理时,会出现以下情况,大框包小框,会导致,明明场景中只有一个目标物而识别出两个或者更多目标物,且画出的框均标记在目标物上,在单张图目标物较多的场景该现象更为严重,具体情况如下图

    2024年02月03日
    浏览(44)
  • yolov5环境搭建(Anaconda-py3.9、PyTorch-CPU、yolov5-4.0、PyCharm)

    Windows 10 Anaconda(基于Python3.9),已配置好环境变量 yolov5相关的代码、权重文件等,已经打包整理好,可以通过百度网盘绿色下载。链接: https://pan.baidu.com/s/1okVkfpqjI5wD6PigK-AH0w?pwd=yscw 提取码: yscw Anconda除了提供丰富的科学包外,还可以通过创建虚拟化境的方式用于进行环境隔离

    2024年02月04日
    浏览(39)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包