基于Yolov5的二维码QR码识别

这篇具有很好参考价值的文章主要介绍了基于Yolov5的二维码QR码识别。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

1.QR code介绍

 1.1 通过split_train_val.py得到trainval.txt、val.txt、test.txt  

1.2 通过voc_label.py得到适合yolov5训练需要的

 2.基于yolov5的QR码检测

2.1配置 QR.yaml

2.2 修改yolov5s_QR.yaml

2.3 训练QR码检测模型

3.性能评价

4.QR码识别

4.1 转成onnx模型

4.2 基于opencv的QR码识别

4.3 基于zbar的QR码识别 

5.代码上传


1.QR code介绍

        二维码被广泛的应用在我们日常生活中,比如微信和支付宝支付、火车票、商品标识等。二维码的出现极大的方便了我们日常的生活,同时也能将信息较为隐蔽的传输。二维码种类多种多样,有QR Code、Data Matrix、Code One等,日常生活中常用的二维码是QR二维码,该二维码样式以及每部分的作用在图7-30给出。二维码定点方向有三个较大的“回”字形区域用于对二维码进行定位,该区域最大的特别之处在于任何一条经过中心的直线其在黑色和白色区域的长度比值都为1:1:3:1:1。二维码中间具有多个较小的“回”字形区域用于二维码的对齐,根据二维码版本和尺寸的不同,对齐区域的数目也不尽相同。基于Yolov5的二维码QR码识别

基于Yolov5的二维码QR码识别

数据集 大小10,85张

数据集见:https://download.csdn.net/download/m0_63774211/87741216

基于Yolov5的二维码QR码识别基于Yolov5的二维码QR码识别

 1.1 通过split_train_val.py得到trainval.txt、val.txt、test.txt  

# coding:utf-8
 
import os
import random
import argparse
 
parser = argparse.ArgumentParser()
#xml文件的地址,根据自己的数据进行修改 xml一般存放在Annotations下
parser.add_argument('--xml_path', default='Annotations', type=str, help='input xml label path')
#数据集的划分,地址选择自己数据下的ImageSets/Main
parser.add_argument('--txt_path', default='ImageSets/Main', type=str, help='output txt label path')
opt = parser.parse_args()
 
trainval_percent = 0.9
train_percent = 0.8
xmlfilepath = opt.xml_path
txtsavepath = opt.txt_path
total_xml = os.listdir(xmlfilepath)
if not os.path.exists(txtsavepath):
    os.makedirs(txtsavepath)
 
num = len(total_xml)
list_index = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list_index, tv)
train = random.sample(trainval, tr)
 
file_trainval = open(txtsavepath + '/trainval.txt', 'w')
file_test = open(txtsavepath + '/test.txt', 'w')
file_train = open(txtsavepath + '/train.txt', 'w')
file_val = open(txtsavepath + '/val.txt', 'w')
 
for i in list_index:
    name = total_xml[i][:-4] + '\n'
    if i in trainval:
        file_trainval.write(name)
        if i in train:
            file_train.write(name)
        else:
            file_val.write(name)
    else:
        file_test.write(name)
 
file_trainval.close()
file_train.close()
file_val.close()
file_test.close()

1.2 通过voc_label.py得到适合yolov5训练需要的

# -*- coding: utf-8 -*-
import xml.etree.ElementTree as ET
import os
from os import getcwd
 
sets = ['train', 'val']
classes = ["QR"]   # 改成自己的类别
abs_path = os.getcwd()
print(abs_path)
 
def convert(size, box):
    dw = 1. / (size[0])
    dh = 1. / (size[1])
    x = (box[0] + box[1]) / 2.0 - 1
    y = (box[2] + box[3]) / 2.0 - 1
    w = box[1] - box[0]
    h = box[3] - box[2]
    x = x * dw
    w = w * dw
    y = y * dh
    h = h * dh
    return x, y, w, h
 
def convert_annotation(image_id):
    in_file = open('Annotations/%s.xml' % (image_id), encoding='UTF-8')
    out_file = open('labels/%s.txt' % (image_id), 'w')
    tree = ET.parse(in_file)
    root = tree.getroot()
    size = root.find('size')
    w = int(size.find('width').text)
    h = int(size.find('height').text)
    for obj in root.iter('object'):
        difficult = obj.find('difficult').text
        #difficult = obj.find('Difficult').text
        cls = obj.find('name').text
        if cls not in classes or int(difficult) == 1:
            continue
        cls_id = classes.index(cls)
        xmlbox = obj.find('bndbox')
        b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
             float(xmlbox.find('ymax').text))
        b1, b2, b3, b4 = b
        # 标注越界修正
        if b2 > w:
            b2 = w
        if b4 > h:
            b4 = h
        b = (b1, b2, b3, b4)
        bb = convert((w, h), b)
        out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
 
wd = getcwd()
for image_set in sets:
    if not os.path.exists('labels/'):
        os.makedirs('labels/')
    image_ids = open('ImageSets/Main/%s.txt' % (image_set)).read().strip().split()
    list_file = open('%s.txt' % (image_set), 'w')
    for image_id in image_ids:
        list_file.write(abs_path + '/images/%s.jpg\n' % (image_id))
        convert_annotation(image_id)
    list_file.close()

 2.基于yolov5的QR码检测

2.1配置 QR.yaml

# train and val data as 1) directory: path/images/, 2) file: path/images.txt, or 3) list: [path1/images/, path2/images/]
train: data/QR/train.txt # 16551 images
val: data/QR/val.txt  # 4952 images

# number of classes
nc: 1

# class names
names: ['QR']

2.2 修改yolov5s_QR.yaml

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license

# Parameters
nc: 1  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 3, C3, [1024]],
   [-1, 1, SPPF, [1024, 5]],  # 9
  ]

# YOLOv5 v6.0 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 13

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)

   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)

   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]

2.3 训练QR码检测模型

parser = argparse.ArgumentParser()
    parser.add_argument('--weights', type=str, default=ROOT / 'weights/yolov5s.pt', help='initial weights path')
    parser.add_argument('--cfg', type=str, default='models/yolov5s.yaml', help='model.yaml path')
    parser.add_argument('--data', type=str, default=ROOT / 'data/QR.yaml', help='dataset.yaml path')
    parser.add_argument('--hyp', type=str, default=ROOT / 'data/hyps/hyp.scratch-low.yaml', help='hyperparameters path')
    parser.add_argument('--epochs', type=int, default=100, help='total training epochs')
    parser.add_argument('--batch-size', type=int, default=8, help='total batch size for all GPUs, -1 for autobatch')
    parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='train, val image size (pixels)')
    parser.add_argument('--rect', action='store_true', help='rectangular training')
    parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
    parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
    parser.add_argument('--noval', action='store_true', help='only validate final epoch')
    parser.add_argument('--noautoanchor', action='store_true', help='disable AutoAnchor')
    parser.add_argument('--noplots', action='store_true', help='save no plot files')
    parser.add_argument('--evolve', type=int, nargs='?', const=300, help='evolve hyperparameters for x generations')
    parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
    parser.add_argument('--cache', type=str, nargs='?', const='ram', help='image --cache ram/disk')
    parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
    parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
    parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
    parser.add_argument('--optimizer', type=str, choices=['SGD', 'Adam', 'AdamW'], default='SGD', help='optimizer')
    parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
    parser.add_argument('--workers', type=int, default=0, help='max dataloader workers (per RANK in DDP mode)')
    parser.add_argument('--project', default=ROOT / 'runs/train_QR', help='save to project/name')
    parser.add_argument('--name', default='exp', help='save to project/name')
    parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
    parser.add_argument('--quad', action='store_true', help='quad dataloader')
    parser.add_argument('--cos-lr', action='store_true', help='cosine LR scheduler')
    parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon')
    parser.add_argument('--patience', type=int, default=100, help='EarlyStopping patience (epochs without improvement)')
    parser.add_argument('--freeze', nargs='+', type=int, default=[0], help='Freeze layers: backbone=10, first3=0 1 2')
    parser.add_argument('--save-period', type=int, default=-1, help='Save checkpoint every x epochs (disabled if < 1)')
    parser.add_argument('--seed', type=int, default=0, help='Global training seed')
    parser.add_argument('--local_rank', type=int, default=-1, help='Automatic DDP Multi-GPU argument, do not modify')

开启python train.py 

3.性能评价

map 为0.962

基于Yolov5的二维码QR码识别

 检测结果图:

基于Yolov5的二维码QR码识别

4.QR码识别

4.1 转成onnx模型

python export.py --weights runs/train_QR/exp3/weights/best.pt --include  onnx  engine --device cpu

4.2 基于opencv的QR码识别

import cv2
import time
import sys
import numpy as np



det = cv2.QRCodeDetector()

def build_model(is_cuda):
    net = cv2.dnn.readNet("best.onnx") 
    if is_cuda:  
        print("Attempty to use CUDA")
        net.setPreferableBackend(cv2.dnn.DNN_BACKEND_CUDA)
        net.setPreferableTarget(cv2.dnn.DNN_TARGET_CUDA_FP16)
    else:
        print("Running on CPU")
        net.setPreferableBackend(cv2.dnn.DNN_BACKEND_OPENCV)
        net.setPreferableTarget(cv2.dnn.DNN_TARGET_CPU)
    return net

INPUT_WIDTH = 640
INPUT_HEIGHT = 640
SCORE_THRESHOLD = 0.2
NMS_THRESHOLD = 0.4
CONFIDENCE_THRESHOLD = 0.4

def detect(image, net): 
    blob = cv2.dnn.blobFromImage(image, 1/255.0, (INPUT_WIDTH, INPUT_HEIGHT), swapRB=True, crop=False)
    net.setInput(blob)
    preds = net.forward()
    return preds



def load_classes():  
    class_list = []
    with open("classes.txt", "r") as f:
        class_list = [cname.strip() for cname in f.readlines()]
    return class_list

class_list = load_classes()

def wrap_detection(input_image, output_data):  
    class_ids = []  
    confidences = []  
    boxes = [] 

    rows = output_data.shape[0] 

    image_width, image_height, _ = input_image.shape

    x_factor = image_width / INPUT_WIDTH  
    y_factor =  image_height / INPUT_HEIGHT

    for r in range(rows):
        row = output_data[r]
        confidence = row[4]
        if confidence >= 0.4:  

            classes_scores = row[5:]
            _, _, _, max_indx = cv2.minMaxLoc(classes_scores)
            class_id = max_indx[1]
            if (classes_scores[class_id] > .25):

                confidences.append(confidence)

                class_ids.append(class_id)

                x, y, w, h = row[0].item(), row[1].item(), row[2].item(), row[3].item() 
                left = int((x - 0.5 * w) * x_factor)
                top = int((y - 0.5 * h) * y_factor)
                width = int(w * x_factor)
                height = int(h * y_factor)
                box = np.array([left, top, width, height])
                boxes.append(box)

    indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.25, 0.45) 

    result_class_ids = []
    result_confidences = []
    result_boxes = []

    for i in indexes:
        result_confidences.append(confidences[i])
        result_class_ids.append(class_ids[i])
        result_boxes.append(boxes[i])

    return result_class_ids, result_confidences, result_boxes

def format_yolov5(frame):  

    row, col, _ = frame.shape
    _max = max(col, row)
    result = np.zeros((_max, _max, 3), np.uint8)
    result[0:row, 0:col] = frame
    return result


colors = [(255, 255, 0), (0, 255, 0), (0, 255, 255), (255, 0, 0)] 

is_cuda = len(sys.argv) > 1 and sys.argv[1] == "cuda"

net = build_model(is_cuda)  


start = time.time_ns()
frame_count = 0
total_frames = 0
fps = -1


frame = cv2.imread('QR-00345.jpg')
inputImage = format_yolov5(frame)  
outs = detect(inputImage, net) 

class_ids, confidences, boxes = wrap_detection(inputImage, outs[0]) 

for (classid, confidence, box) in zip(class_ids, confidences, boxes): 
    color = colors[int(classid) % len(colors)]
    ROI=frame[(box[1]):(box[1]+box[3]),(box[0]):(box[0]+box[2])]  
    
    
    data, pts, st_code = det.detectAndDecode(ROI)  
    print(data)
    
    cv2.rectangle(frame, box, color, 2) 
    #cv2.rectangle(frame, (box[0], box[1] - 20), (box[0] + box[2], box[1]), color, -1)
    #cv2.putText(frame, class_list[classid], (box[0], box[1] - 10), cv2.FONT_HERSHEY_SIMPLEX, .5, (0,0,0))
    cv2.putText(frame, str(data), (box[0], box[1] - 10), cv2.FONT_HERSHEY_SIMPLEX, .3, (0,0,0))
 
    

cv2.imshow("output", frame)  
cv2.waitKey(10000)



检测结果

4.3 基于zbar的QR码识别 

import cv2
import time
import sys
import numpy as np
import zxing
from pyzbar import pyzbar




def build_model(is_cuda):
    net = cv2.dnn.readNet("best.onnx")
    if is_cuda:
        print("Attempty to use CUDA")
        net.setPreferableBackend(cv2.dnn.DNN_BACKEND_CUDA)
        net.setPreferableTarget(cv2.dnn.DNN_TARGET_CUDA_FP16)
    else:
        print("Running on CPU")
        net.setPreferableBackend(cv2.dnn.DNN_BACKEND_OPENCV)
        net.setPreferableTarget(cv2.dnn.DNN_TARGET_CPU)
    return net

INPUT_WIDTH = 640
INPUT_HEIGHT = 640
SCORE_THRESHOLD = 0.2
NMS_THRESHOLD = 0.4
CONFIDENCE_THRESHOLD = 0.4

def detect(image, net):
    blob = cv2.dnn.blobFromImage(image, 1/255.0, (INPUT_WIDTH, INPUT_HEIGHT), swapRB=True, crop=False)
    net.setInput(blob)
    preds = net.forward()
    return preds

def load_capture():
    capture = cv2.VideoCapture("sample.mp4")
    return capture

def load_classes():
    class_list = []
    with open("classes.txt", "r") as f:
        class_list = [cname.strip() for cname in f.readlines()]
    return class_list

class_list = load_classes()

def wrap_detection(input_image, output_data):
    class_ids = []
    confidences = []
    boxes = []

    rows = output_data.shape[0]

    image_width, image_height, _ = input_image.shape

    x_factor = image_width / INPUT_WIDTH
    y_factor =  image_height / INPUT_HEIGHT

    for r in range(rows):
        row = output_data[r]
        confidence = row[4]
        if confidence >= 0.4:

            classes_scores = row[5:]
            _, _, _, max_indx = cv2.minMaxLoc(classes_scores)
            class_id = max_indx[1]
            if (classes_scores[class_id] > .25):

                confidences.append(confidence)

                class_ids.append(class_id)

                x, y, w, h = row[0].item(), row[1].item(), row[2].item(), row[3].item() 
                left = int((x - 0.5 * w) * x_factor)
                top = int((y - 0.5 * h) * y_factor)
                width = int(w * x_factor)
                height = int(h * y_factor)
                box = np.array([left, top, width, height])
                boxes.append(box)

    indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.25, 0.45) 

    result_class_ids = []
    result_confidences = []
    result_boxes = []

    for i in indexes:
        result_confidences.append(confidences[i])
        result_class_ids.append(class_ids[i])
        result_boxes.append(boxes[i])

    return result_class_ids, result_confidences, result_boxes

def format_yolov5(frame):

    row, col, _ = frame.shape
    _max = max(col, row)
    result = np.zeros((_max, _max, 3), np.uint8)
    result[0:row, 0:col] = frame
    return result


colors = [(255, 255, 0), (0, 255, 0), (0, 255, 255), (255, 0, 0)]

is_cuda = len(sys.argv) > 1 and sys.argv[1] == "cuda"

net = build_model(is_cuda)
capture = load_capture()

start = time.time_ns()
frame_count = 0
total_frames = 0
fps = -1


frame = cv2.imread('QR-00345.jpg')
inputImage = format_yolov5(frame)
outs = detect(inputImage, net)

class_ids, confidences, boxes = wrap_detection(inputImage, outs[0])


for (classid, confidence, box) in zip(class_ids, confidences, boxes):
    color = colors[int(classid) % len(colors)]
    ROI=frame[(box[1]):(box[1]+box[3]),(box[0]):(box[0]+box[2])]
    
    #barcode = zx.decode(ROI)
    #print(barcode.parsed)
    data = pyzbar.decode(ROI)
    print(data)
    
    cv2.rectangle(frame, box, color, 2)
    #cv2.rectangle(frame, (box[0], box[1] - 20), (box[0] + box[2], box[1]), color, -1)
    #cv2.putText(frame, class_list[classid], (box[0], box[1] - 10), cv2.FONT_HERSHEY_SIMPLEX, .5, (0,0,0))
    cv2.putText(frame, str(data), (box[0], box[1] - 10), cv2.FONT_HERSHEY_SIMPLEX, .3, (0,0,0))
  
    

cv2.imshow("output", frame)
cv2.waitKey(10000)



5.代码上传

https://download.csdn.net/download/m0_63774211/87743400文章来源地址https://www.toymoban.com/news/detail-466292.html

到了这里,关于基于Yolov5的二维码QR码识别的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 计算机竞赛 基于机器视觉的二维码识别检测 - opencv 二维码 识别检测 机器视觉

    🔥 优质竞赛项目系列,今天要分享的是 基于机器学习的二维码识别检测 - opencv 二维码 识别检测 机器视觉 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🧿 更多资料, 项目分享: https://gitee.com/dancheng-senior/postgraduate 物体检测就是对数字图像中一类特定的物体的

    2024年02月11日
    浏览(64)
  • 计算机毕设 基于机器视觉的二维码识别检测 - opencv 二维码 识别检测 机器视觉

    今天学长向大家介绍一个机器视觉的毕设项目,二维码 / 条形码检测与识别 基于机器学习的二维码识别检测 - opencv 二维码 识别检测 机器视觉 物体检测就是对数字图像中一类特定的物体的位置进行自动检测。基本的检测框架有两种: 一种是以滑动窗口为单位对图像进行扫描

    2024年02月10日
    浏览(53)
  • 互联网加竞赛 基于机器视觉的二维码识别检测 - opencv 二维码 识别检测 机器视觉

    🔥 优质竞赛项目系列,今天要分享的是 基于机器学习的二维码识别检测 - opencv 二维码 识别检测 机器视觉 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🧿 更多资料, 项目分享: https://gitee.com/dancheng-senior/postgraduate 物体检测就是对数字图像中一类特定的物体的

    2024年01月18日
    浏览(74)
  • flutter qr_flutter二维码库填充不满问题解决方案

     全局搜索找到_PaintMetrics类的_calculateMetrics()方法,将 这一行代码注释掉,然后添加_pixelSize = pixelSize这行代码,完整代码如下: class _PaintMetrics {   _PaintMetrics({     required this.containerSize,     required this.gapSize,     required this.moduleCount,   }) {     _calculateMetrics();   }   final int

    2024年01月19日
    浏览(41)
  • 基于Qt的二维码生成与识别

    1.通过封装的QZxing开源库生成和识别二维码,下载地址: GitCode - 开发者的代码家园 https://gitcode.com/mirrors/ftylitak/qzxing/tree/master。 2.下载解压后,使用Qt Creator xx(qt编程软件)打开src目录下的QZXing.pro文件并运行代码,在编译的debug路径下获取QZXing3.dll和libQZXing3.a库文件。 1.在.

    2024年04月27日
    浏览(36)
  • OpenCv案例(十): 基于OpenCvSharp识别二维码

    1:二维码在工业和工作生活中应用广泛,下面基于OpenCvSharp识别图像中二维码; 2:函数:OpenCvSharp中, QRCodeDetector  有两个相关API分别实现二维码检测与二维码解析。           public string DetectAndDecode(InputArray img, out Point2f[] points, OutputArray straightQrcode = null); 其中:      

    2024年02月11日
    浏览(41)
  • opencv案例03 -基于OpenCV实现二维码生成,发现,定位,识别

    废话不多说,直接上代码 运行效果: 会在当前目前生成一张图片 对生成的二维码识别 opencv从4代之后推出了二维码识别接口.调用方法是这样的.代码如下: 运行结果: 返回值有三个, 第一个result就是解码后的内容,例如我这个二维码的结果是\\\"B0018\\\",当然也可以是个纯数字. 第二

    2024年02月11日
    浏览(47)
  • Python实现PC摄像头扫描二维码,让你的电脑变身QR码识读器!

    目录 简介: 源代码: 源代码说明: 效果如下所示: 使用PC摄像机扫描二维码可以有很多应用场景,例如: 支付宝、微信支付等移动支付方式需要使用二维码进行支付,PC摄像机可以扫描这些支付二维码,从而实现PC端支付功能; 在生产制造过程中,可以使用二维码来管理产

    2024年02月03日
    浏览(41)
  • 基于ZXing.NET实现的二维码生成和识别客户端

    ZXing.Net 的一个可移植软件包,是一个开源的、多格式的1D/2D条形码图像处理库,最初是用Java实现的。已经过大量优化和改进,它已经被手动移植。它与.Net 2.0、.Net 3.5、.Net 4.x、.Net 5.x、.Net 6.x、.Net 7.x、Windows RT类库和组件、UWP、.Net Standard 1.x和2.0x、.Net Core App 3.x、Silverlight 4、

    2024年02月08日
    浏览(46)
  • c#,dotnet, DataMatrix 类型二维码深度识别,OCR,(基于 Halcon)

    代码中部分调用的 c++ 函数参数,具体说明自行研究~(我也是参考的其他资源,还没研究透彻) 例如:HOperatorSet.GenRectangle2() , 2000, 2000, 0, 2000, 2000 这些数字应该是选取的图片解析范围、尺寸(长、宽),2000 更改成 100 后可能只会识别到部分二维码。 效果图: 链接:https:

    2024年02月20日
    浏览(43)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包