/*
- Copyright © 1997, 2013, Oracle and/or its affiliates. All rights reserved.
- DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
- This code is free software; you can redistribute it and/or modify it
- under the terms of the GNU General Public License version 2 only, as
- published by the Free Software Foundation. Oracle designates this
- particular file as subject to the “Classpath” exception as provided
- by Oracle in the LICENSE file that accompanied this code.
- This code is distributed in the hope that it will be useful, but WITHOUT
- ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
- version 2 for more details (a copy is included in the LICENSE file that
- accompanied this code).
- You should have received a copy of the GNU General Public License version
- 2 along with this work; if not, write to the Free Software Foundation,
- Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
- Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
- or visit www.oracle.com if you need additional information or have any
- questions.
*/
package java.util;
import java.io.IOException;
import java.io.InvalidObjectException;
import java.io.Serializable;
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import java.util.function.BiConsumer;
import java.util.function.BiFunction;
import java.util.function.Consumer;
import java.util.function.Function;
/**文章来源:https://www.toymoban.com/news/detail-466478.html
-
Hash table based implementation of the Map interface. This
-
implementation provides all of the optional map operations, and permits
-
null values and the null key. (The HashMap
-
class is roughly equivalent to Hashtable, except that it is
-
unsynchronized and permits nulls.) This class makes no guarantees as to
-
the order of the map; in particular, it does not guarantee that the order
-
will remain constant over time.
-
This implementation provides constant-time performance for the basic
-
operations (get and put), assuming the hash function
-
disperses the elements properly among the buckets. Iteration over
-
collection views requires time proportional to the “capacity” of the
-
HashMap instance (the number of buckets) plus its size (the number
-
of key-value mappings). Thus, it’s very important not to set the initial
-
capacity too high (or the load factor too low) if iteration performance is
-
important.
-
An instance of HashMap has two parameters that affect its
-
performance: initial capacity and load factor. The
-
capacity is the number of buckets in the hash table, and the initial
-
capacity is simply the capacity at the time the hash table is created. The
-
load factor is a measure of how full the hash table is allowed to
-
get before its capacity is automatically increased. When the number of
-
entries in the hash table exceeds the product of the load factor and the
-
current capacity, the hash table is rehashed (that is, internal data
-
structures are rebuilt) so that the hash table has approximately twice the
-
number of buckets.
-
As a general rule, the default load factor (.75) offers a good
-
tradeoff between time and space costs. Higher values decrease the
-
space overhead but increase the lookup cost (reflected in most of
-
the operations of the HashMap class, including
-
get and put). The expected number of entries in
-
the map and its load factor should be taken into account when
-
setting its initial capacity, so as to minimize the number of
-
rehash operations. If the initial capacity is greater than the
-
maximum number of entries divided by the load factor, no rehash
-
operations will ever occur.
-
If many mappings are to be stored in a HashMap
-
instance, creating it with a sufficiently large capacity will allow
-
the mappings to be stored more efficiently than letting it perform
-
automatic rehashing as needed to grow the table. Note that using
-
many keys with the same {@code hashCode()} is a sure way to slow
-
down performance of any hash table. To ameliorate impact, when keys
-
are {@link Comparable}, this class may use comparison order among
-
keys to help break ties.
-
Note that this implementation is not synchronized.
-
If multiple threads access a hash map concurrently, and at least one of
-
the threads modifies the map structurally, it must be
-
synchronized externally. (A structural modification is any operation
-
that adds or deletes one or more mappings; merely changing the value
-
associated with a key that an instance already contains is not a
-
structural modification.) This is typically accomplished by
-
synchronizing on some object that naturally encapsulates the map.
-
If no such object exists, the map should be “wrapped” using the
-
{@link Collections#synchronizedMap Collections.synchronizedMap}
-
method. This is best done at creation time, to prevent accidental
-
unsynchronized access to the map:
-
Map m = Collections.synchronizedMap(new HashMap(…));
-
The iterators returned by all of this class's "collection view methods"
-
are fail-fast: if the map is structurally modified at any time after
-
the iterator is created, in any way except through the iterator’s own
-
remove method, the iterator will throw a
-
{@link ConcurrentModificationException}. Thus, in the face of concurrent
-
modification, the iterator fails quickly and cleanly, rather than risking
-
arbitrary, non-deterministic behavior at an undetermined time in the
-
future.
-
Note that the fail-fast behavior of an iterator cannot be guaranteed
-
as it is, generally speaking, impossible to make any hard guarantees in the
-
presence of unsynchronized concurrent modification. Fail-fast iterators
-
throw ConcurrentModificationException on a best-effort basis.
-
Therefore, it would be wrong to write a program that depended on this
-
exception for its correctness: the fail-fast behavior of iterators
-
should be used only to detect bugs.
-
This class is a member of the
-
Java Collections Framework.
-
@param the type of keys maintained by this map
-
@param the type of mapped values
-
@author Doug Lea
-
@author Josh Bloch
-
@author Arthur van Hoff
-
@author Neal Gafter
-
@see Object#hashCode()
-
@see Collection
-
@see Map
-
@see TreeMap
-
@see Hashtable
-
@since 1.2
*/
public class HashMap<K,V> extends AbstractMap<K,V>
implements Map<K,V>, Cloneable, Serializable {private static final long serialVersionUID = 362498820763181265L;
/*
- Implementation notes.
- This map usually acts as a binned (bucketed) hash table, but
- when bins get too large, they are transformed into bins of
- TreeNodes, each structured similarly to those in
- java.util.TreeMap. Most methods try to use normal bins, but
- relay to TreeNode methods when applicable (simply by checking
- instanceof a node). Bins of TreeNodes may be traversed and
- used like any others, but additionally support faster lookup
- when overpopulated. However, since the vast majority of bins in
- normal use are not overpopulated, checking for existence of
- tree bins may be delayed in the course of table methods.
- Tree bins (i.e., bins whose elements are all TreeNodes) are
- ordered primarily by hashCode, but in the case of ties, if two
- elements are of the same “class C implements Comparable”,
- type then their compareTo method is used for ordering. (We
- conservatively check generic types via reflection to validate
- this – see method comparableClassFor). The added complexity
- of tree bins is worthwhile in providing worst-case O(log n)
- operations when keys either have distinct hashes or are
- orderable, Thus, performance degrades gracefully under
- accidental or malicious usages in which hashCode() methods
- return values that are poorly distributed, as well as those in
- which many keys share a hashCode, so long as they are also
- Comparable. (If neither of these apply, we may waste about a
- factor of two in time and space compared to taking no
- precautions. But the only known cases stem from poor user
- programming practices that are already so slow that this makes
- little difference.)
- Because TreeNodes are about twice the size of regular nodes, we
- use them only when bins contain enough nodes to warrant use
- (see TREEIFY_THRESHOLD). And when they become too small (due to
- removal or resizing) they are converted back to plain bins. In
- usages with well-distributed user hashCodes, tree bins are
- rarely used. Ideally, under random hashCodes, the frequency of
- nodes in bins follows a Poisson distribution
- (http://en.wikipedia.org/wiki/Poisson_distribution) with a
- parameter of about 0.5 on average for the default resizing
- threshold of 0.75, although with a large variance because of
- resizing granularity. Ignoring variance, the expected
- occurrences of list size k are (exp(-0.5) * pow(0.5, k) /
- factorial(k)). The first values are:
- 0: 0.60653066
- 1: 0.30326533
- 2: 0.07581633
- 3: 0.01263606
- 4: 0.00157952
- 5: 0.00015795
- 6: 0.00001316
- 7: 0.00000094
- 8: 0.00000006
- more: less than 1 in ten million
- The root of a tree bin is normally its first node. However,
- sometimes (currently only upon Iterator.remove), the root might
- be elsewhere, but can be recovered following parent links
- (method TreeNode.root()).
- All applicable internal methods accept a hash code as an
- argument (as normally supplied from a public method), allowing
- them to call each other without recomputing user hashCodes.
- Most internal methods also accept a “tab” argument, that is
- normally the current table, but may be a new or old one when
- resizing or converting.
- When bin lists are treeified, split, or untreeified, we keep
- them in the same relative access/traversal order (i.e., field
- Node.next) to better preserve locality, and to slightly
- simplify handling of splits and traversals that invoke
- iterator.remove. When using comparators on insertion, to keep a
- total ordering (or as close as is required here) across
- rebalancings, we compare classes and identityHashCodes as
- tie-breakers.
- The use and transitions among plain vs tree modes is
- complicated by the existence of subclass LinkedHashMap. See
- below for hook methods defined to be invoked upon insertion,
- removal and access that allow LinkedHashMap internals to
- otherwise remain independent of these mechanics. (This also
- requires that a map instance be passed to some utility methods
- that may create new nodes.)
- The concurrent-programming-like SSA-based coding style helps
- avoid aliasing errors amid all of the twisty pointer operations.
*/
/**
- The default initial capacity - MUST be a power of two.
*/
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
/**
- The maximum capacity, used if a higher value is implicitly specified
- by either of the constructors with arguments.
- MUST be a power of two <= 1<<30.
*/
static final int MAXIMUM_CAPACITY = 1 << 30;
/**
- The load factor used when none specified in constructor.
*/
static final float DEFAULT_LOAD_FACTOR = 0.75f;
/**
- The bin count threshold for using a tree rather than list for a
- bin. Bins are converted to trees when adding an element to a
- bin with at least this many nodes. The value must be greater
- than 2 and should be at least 8 to mesh with assumptions in
- tree removal about conversion back to plain bins upon
- shrinkage.
*/
static final int TREEIFY_THRESHOLD = 8;
/**
- The bin count threshold for untreeifying a (split) bin during a
- resize operation. Should be less than TREEIFY_THRESHOLD, and at
- most 6 to mesh with shrinkage detection under removal.
*/
static final int UNTREEIFY_THRESHOLD = 6;
/**
- The smallest table capacity for which bins may be treeified.
- (Otherwise the table is resized if too many nodes in a bin.)
- Should be at least 4 * TREEIFY_THRESHOLD to avoid conflicts
- between resizing and treeification thresholds.
*/
static final int MIN_TREEIFY_CAPACITY = 64;
/**
-
Basic hash bin node, used for most entries. (See below for
-
TreeNode subclass, and in LinkedHashMap for its Entry subclass.)
*/
static class Node<K,V> implements Map.Entry<K,V> {
final int hash;
final K key;
V value;
Node<K,V> next;Node(int hash, K key, V value, Node<K,V> next) {
this.hash = hash;
this.key = key;
this.value = value;
this.next = next;
}public final K getKey() { return key; }
public final V getValue() { return value; }
public final String toString() { return key + “=” + value; }public final int hashCode() {
return Objects.hashCode(key) ^ Objects.hashCode(value);
}public final V setValue(V newValue) {
V oldValue = value;
value = newValue;
return oldValue;
}public final boolean equals(Object o) {
if (o == this)
return true;
if (o instanceof Map.Entry) {
Map.Entry<?,?> e = (Map.Entry<?,?>)o;
if (Objects.equals(key, e.getKey()) &&
Objects.equals(value, e.getValue()))
return true;
}
return false;
}
}
/* ---------------- Static utilities -------------- */
/**
- Computes key.hashCode() and spreads (XORs) higher bits of hash
- to lower. Because the table uses power-of-two masking, sets of
- hashes that vary only in bits above the current mask will
- always collide. (Among known examples are sets of Float keys
- holding consecutive whole numbers in small tables.) So we
- apply a transform that spreads the impact of higher bits
- downward. There is a tradeoff between speed, utility, and
- quality of bit-spreading. Because many common sets of hashes
- are already reasonably distributed (so don’t benefit from
- spreading), and because we use trees to handle large sets of
- collisions in bins, we just XOR some shifted bits in the
- cheapest possible way to reduce systematic lossage, as well as
- to incorporate impact of the highest bits that would otherwise
- never be used in index calculations because of table bounds.
*/
static final int hash(Object key) {
int h;
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
/**
- Returns x’s Class if it is of the form "class C implements
- Comparable", else null.
*/
static Class<?> comparableClassFor(Object x) { if (x instanceof Comparable) { Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
if ((c = x.getClass()) == String.class) // bypass checks
return c;
if ((ts = c.getGenericInterfaces()) != null) {
for (int i = 0; i < ts.length; ++i) {
if (((t = ts[i]) instanceof ParameterizedType) &&
((p = (ParameterizedType)t).getRawType() ==
Comparable.class) &&
(as = p.getActualTypeArguments()) != null &&
as.length == 1 && as[0] == c) // type arg is c
return c;
}
}
}
return null;
}
/**
- Returns k.compareTo(x) if x matches kc (k’s screened comparable
- class), else 0.
*/
@SuppressWarnings({“rawtypes”,“unchecked”}) // for cast to Comparable
static int compareComparables(Class<?> kc, Object k, Object x) {
return (x == null || x.getClass() != kc ? 0 :
((Comparable)k).compareTo(x));
}
/**
- Returns a power of two size for the given target capacity.
*/
static final int tableSizeFor(int cap) {
int n = cap - 1;
n |= n >>> 1;
n |= n >>> 2;
n |= n >>> 4;
n |= n >>> 8;
n |= n >>> 16;
return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}
/* ---------------- Fields -------------- */
/**
- The table, initialized on first use, and resized as
- necessary. When allocated, length is always a power of two.
- (We also tolerate length zero in some operations to allow
- bootstrapping mechanics that are currently not needed.)
*/
transient Node<K,V>[] table;
/**
- Holds cached entrySet(). Note that AbstractMap fields are used
- for keySet() and values().
*/
transient Set<Map.Entry<K,V>> entrySet;
/**
- The number of key-value mappings contained in this map.
*/
transient int size;
/**
- The number of times this HashMap has been structurally modified
- Structural modifications are those that change the number of mappings in
- the HashMap or otherwise modify its internal structure (e.g.,
- rehash). This field is used to make iterators on Collection-views of
- the HashMap fail-fast. (See ConcurrentModificationException).
*/
transient int modCount;
/**
- The next size value at which to resize (capacity * load factor).
- @serial
*/
// (The javadoc description is true upon serialization.
// Additionally, if the table array has not been allocated, this
// field holds the initial array capacity, or zero signifying
// DEFAULT_INITIAL_CAPACITY.)
int threshold;
/**
- The load factor for the hash table.
- @serial
*/
final float loadFactor;
/* ---------------- Public operations -------------- */
/**
- Constructs an empty HashMap with the specified initial
- capacity and load factor.
- @param initialCapacity the initial capacity
- @param loadFactor the load factor
- @throws IllegalArgumentException if the initial capacity is negative
-
or the load factor is nonpositive
*/
public HashMap(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " +
initialCapacity);
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " +
loadFactor);
this.loadFactor = loadFactor;
this.threshold = tableSizeFor(initialCapacity);
}/**
- Constructs an empty HashMap with the specified initial
- capacity and the default load factor (0.75).
- @param initialCapacity the initial capacity.
- @throws IllegalArgumentException if the initial capacity is negative.
*/
public HashMap(int initialCapacity) {
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
/**
- Constructs an empty HashMap with the default initial capacity
- (16) and the default load factor (0.75).
*/
public HashMap() {
this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
}
/**
- Constructs a new HashMap with the same mappings as the
- specified Map. The HashMap is created with
- default load factor (0.75) and an initial capacity sufficient to
- hold the mappings in the specified Map.
- @param m the map whose mappings are to be placed in this map
- @throws NullPointerException if the specified map is null
*/
public HashMap(Map<? extends K, ? extends V> m) {
this.loadFactor = DEFAULT_LOAD_FACTOR;
putMapEntries(m, false);
}
/**
- Implements Map.putAll and Map constructor
- @param m the map
- @param evict false when initially constructing this map, else
- true (relayed to method afterNodeInsertion).
*/
final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
int s = m.size();
if (s > 0) {
if (table == null) { // pre-size
float ft = ((float)s / loadFactor) + 1.0F;
int t = ((ft < (float)MAXIMUM_CAPACITY) ?
(int)ft : MAXIMUM_CAPACITY);
if (t > threshold)
threshold = tableSizeFor(t);
}
else if (s > threshold)
resize();
for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
K key = e.getKey();
V value = e.getValue();
putVal(hash(key), key, value, false, evict);
}
}
}
/**
- Returns the number of key-value mappings in this map.
- @return the number of key-value mappings in this map
*/
public int size() {
return size;
}
/**
- Returns true if this map contains no key-value mappings.
- @return true if this map contains no key-value mappings
*/
public boolean isEmpty() {
return size == 0;
}
/**
- Returns the value to which the specified key is mapped,
- or {@code null} if this map contains no mapping for the key.
-
More formally, if this map contains a mapping from a key
- {@code k} to a value {@code v} such that {@code (keynull ? knull :
- key.equals(k))}, then this method returns {@code v}; otherwise
- it returns {@code null}. (There can be at most one such mapping.)
-
A return value of {@code null} does not necessarily
- indicate that the map contains no mapping for the key; it’s also
- possible that the map explicitly maps the key to {@code null}.
- The {@link #containsKey containsKey} operation may be used to
- distinguish these two cases.
- @see #put(Object, Object)
*/
public V get(Object key) {
Node<K,V> e;
return (e = getNode(hash(key), key)) == null ? null : e.value;
}
/**
- Implements Map.get and related methods
- @param hash hash for key
- @param key the key
- @return the node, or null if none
*/
final Node<K,V> getNode(int hash, Object key) {
Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
if ((tab = table) != null && (n = tab.length) > 0 &&
(first = tab[(n - 1) & hash]) != null) {
if (first.hash == hash && // always check first node
((k = first.key) == key || (key != null && key.equals(k))))
return first;
if ((e = first.next) != null) {
if (first instanceof TreeNode)
return ((TreeNode<K,V>)first).getTreeNode(hash, key);
do {
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
return null;
}
/**
- Returns true if this map contains a mapping for the
- specified key.
- @param key The key whose presence in this map is to be tested
- @return true if this map contains a mapping for the specified
- key.
*/
public boolean containsKey(Object key) {
return getNode(hash(key), key) != null;
}
/**
- Associates the specified value with the specified key in this map.
- If the map previously contained a mapping for the key, the old
- value is replaced.
- @param key key with which the specified value is to be associated
- @param value value to be associated with the specified key
- @return the previous value associated with key, or
-
<tt>null</tt> if there was no mapping for <tt>key</tt>.
-
(A <tt>null</tt> return can also indicate that the map
-
previously associated <tt>null</tt> with <tt>key</tt>.)
*/
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}/**
- Implements Map.put and related methods
- @param hash hash for key
- @param key the key
- @param value the value to put
- @param onlyIfAbsent if true, don’t change existing value
- @param evict if false, the table is in creation mode.
- @return previous value, or null if none
*/
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
else {
Node<K,V> e; K k;
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else {
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}
/**
- Initializes or doubles table size. If null, allocates in
- accord with initial capacity target held in field threshold.
- Otherwise, because we are using power-of-two expansion, the
- elements from each bin must either stay at same index, or move
- with a power of two offset in the new table.
- @return the table
*/
final Node<K,V>[] resize() {
Node<K,V>[] oldTab = table;
int oldCap = (oldTab == null) ? 0 : oldTab.length;
int oldThr = threshold;
int newCap, newThr = 0;
if (oldCap > 0) {
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1; // double threshold
}
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
else { // zero initial threshold signifies using defaults
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr;
@SuppressWarnings({“rawtypes”,“unchecked”})
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
if (oldTab != null) {
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
if (e.next == null)
newTab[e.hash & (newCap - 1)] = e;
else if (e instanceof TreeNode)
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
else { // preserve order
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {
next = e.next;
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}
/**
- Replaces all linked nodes in bin at index for given hash unless
- table is too small, in which case resizes instead.
*/
final void treeifyBin(Node<K,V>[] tab, int hash) {
int n, index; Node<K,V> e;
if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
resize();
else if ((e = tab[index = (n - 1) & hash]) != null) {
TreeNode<K,V> hd = null, tl = null;
do {
TreeNode<K,V> p = replacementTreeNode(e, null);
if (tl == null)
hd = p;
else {
p.prev = tl;
tl.next = p;
}
tl = p;
} while ((e = e.next) != null);
if ((tab[index] = hd) != null)
hd.treeify(tab);
}
}
/**
- Copies all of the mappings from the specified map to this map.
- These mappings will replace any mappings that this map had for
- any of the keys currently in the specified map.
- @param m mappings to be stored in this map
- @throws NullPointerException if the specified map is null
*/
public void putAll(Map<? extends K, ? extends V> m) {
putMapEntries(m, true);
}
/**
- Removes the mapping for the specified key from this map if present.
- @param key key whose mapping is to be removed from the map
- @return the previous value associated with key, or
-
<tt>null</tt> if there was no mapping for <tt>key</tt>.
-
(A <tt>null</tt> return can also indicate that the map
-
previously associated <tt>null</tt> with <tt>key</tt>.)
*/
public V remove(Object key) {
Node<K,V> e;
return (e = removeNode(hash(key), key, null, false, true)) == null ?
null : e.value;
}/**
- Implements Map.remove and related methods
- @param hash hash for key
- @param key the key
- @param value the value to match if matchValue, else ignored
- @param matchValue if true only remove if value is equal
- @param movable if false do not move other nodes while removing
- @return the node, or null if none
*/
final Node<K,V> removeNode(int hash, Object key, Object value,
boolean matchValue, boolean movable) {
Node<K,V>[] tab; Node<K,V> p; int n, index;
if ((tab = table) != null && (n = tab.length) > 0 &&
(p = tab[index = (n - 1) & hash]) != null) {
Node<K,V> node = null, e; K k; V v;
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
node = p;
else if ((e = p.next) != null) {
if (p instanceof TreeNode)
node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
else {
do {
if (e.hash == hash &&
((k = e.key) == key ||
(key != null && key.equals(k)))) {
node = e;
break;
}
p = e;
} while ((e = e.next) != null);
}
}
if (node != null && (!matchValue || (v = node.value) == value ||
(value != null && value.equals(v)))) {
if (node instanceof TreeNode)
((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
else if (node == p)
tab[index] = node.next;
else
p.next = node.next;
++modCount;
–size;
afterNodeRemoval(node);
return node;
}
}
return null;
}
/**
- Removes all of the mappings from this map.
- The map will be empty after this call returns.
*/
public void clear() {
Node<K,V>[] tab;
modCount++;
if ((tab = table) != null && size > 0) {
size = 0;
for (int i = 0; i < tab.length; ++i)
tab[i] = null;
}
}
/**
- Returns true if this map maps one or more keys to the
- specified value.
- @param value value whose presence in this map is to be tested
- @return true if this map maps one or more keys to the
-
specified value
*/
public boolean containsValue(Object value) {
Node<K,V>[] tab; V v;
if ((tab = table) != null && size > 0) {
for (int i = 0; i < tab.length; ++i) {
for (Node<K,V> e = tab[i]; e != null; e = e.next) {
if ((v = e.value) == value ||
(value != null && value.equals(v)))
return true;
}
}
}
return false;
}/**
- Returns a {@link Set} view of the keys contained in this map.
- The set is backed by the map, so changes to the map are
- reflected in the set, and vice-versa. If the map is modified
- while an iteration over the set is in progress (except through
- the iterator’s own remove operation), the results of
- the iteration are undefined. The set supports element removal,
- which removes the corresponding mapping from the map, via the
- Iterator.remove, Set.remove,
- removeAll, retainAll, and clear
- operations. It does not support the add or addAll
- operations.
- @return a set view of the keys contained in this map
*/
public Set keySet() {
Set ks = keySet;
if (ks == null) {
ks = new KeySet();
keySet = ks;
}
return ks;
}
final class KeySet extends AbstractSet {
public final int size() { return size; }
public final void clear() { HashMap.this.clear(); }
public final Iterator iterator() { return new KeyIterator(); }
public final boolean contains(Object o) { return containsKey(o); }
public final boolean remove(Object key) {
return removeNode(hash(key), key, null, false, true) != null;
}
public final Spliterator spliterator() {
return new KeySpliterator<>(HashMap.this, 0, -1, 0, 0);
}
public final void forEach(Consumer<? super K> action) {
Node<K,V>[] tab;
if (action == null)
throw new NullPointerException();
if (size > 0 && (tab = table) != null) {
int mc = modCount;
// Android-changed: Detect changes to modCount early.
for (int i = 0; (i < tab.length && modCount == mc); ++i) {
for (Node<K,V> e = tab[i]; e != null; e = e.next)
action.accept(e.key);
}
if (modCount != mc)
throw new ConcurrentModificationException();
}
}
}/**
- Returns a {@link Collection} view of the values contained in this map.
- The collection is backed by the map, so changes to the map are
- reflected in the collection, and vice-versa. If the map is
- modified while an iteration over the collection is in progress
- (except through the iterator’s own remove operation),
- the results of the iteration are undefined. The collection
- supports element removal, which removes the corresponding
- mapping from the map, via the Iterator.remove,
- Collection.remove, removeAll,
- retainAll and clear operations. It does not
- support the add or addAll operations.
- @return a view of the values contained in this map
*/
public Collection values() {
Collection vs = values;
if (vs == null) {
vs = new Values();
values = vs;
}
return vs;
}
final class Values extends AbstractCollection {
public final int size() { return size; }
public final void clear() { HashMap.this.clear(); }
public final Iterator iterator() { return new ValueIterator(); }
public final boolean contains(Object o) { return containsValue(o); }
public final Spliterator spliterator() {
return new ValueSpliterator<>(HashMap.this, 0, -1, 0, 0);
}
public final void forEach(Consumer<? super V> action) {
Node<K,V>[] tab;
if (action == null)
throw new NullPointerException();
if (size > 0 && (tab = table) != null) {
int mc = modCount;
// Android-changed: Detect changes to modCount early.
for (int i = 0; (i < tab.length && modCount == mc); ++i) {
for (Node<K,V> e = tab[i]; e != null; e = e.next)
action.accept(e.value);
}
if (modCount != mc)
throw new ConcurrentModificationException();
}
}
}/**
- Returns a {@link Set} view of the mappings contained in this map.
- The set is backed by the map, so changes to the map are
- reflected in the set, and vice-versa. If the map is modified
- while an iteration over the set is in progress (except through
- the iterator’s own remove operation, or through the
- setValue operation on a map entry returned by the
- iterator) the results of the iteration are undefined. The set
- supports element removal, which removes the corresponding
- mapping from the map, via the Iterator.remove,
- Set.remove, removeAll, retainAll and
- clear operations. It does not support the
- add or addAll operations.
- @return a set view of the mappings contained in this map
*/
public Set<Map.Entry<K,V>> entrySet() {
Set<Map.Entry<K,V>> es;
return (es = entrySet) == null ? (entrySet = new EntrySet()) : es;
}
final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
public final int size() { return size; }
public final void clear() { HashMap.this.clear(); }
public final Iterator<Map.Entry<K,V>> iterator() {
return new EntryIterator();
}
public final boolean contains(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry<?,?> e = (Map.Entry<?,?>) o;
Object key = e.getKey();
Node<K,V> candidate = getNode(hash(key), key);
return candidate != null && candidate.equals(e);
}
public final boolean remove(Object o) {
if (o instanceof Map.Entry) {
Map.Entry<?,?> e = (Map.Entry<?,?>) o;
Object key = e.getKey();
Object value = e.getValue();
return removeNode(hash(key), key, value, true, true) != null;
}
return false;
}
public final Spliterator<Map.Entry<K,V>> spliterator() {
return new EntrySpliterator<>(HashMap.this, 0, -1, 0, 0);
}
public final void forEach(Consumer<? super Map.Entry<K,V>> action) {
Node<K,V>[] tab;
if (action == null)
throw new NullPointerException();
if (size > 0 && (tab = table) != null) {
int mc = modCount;
// Android-changed: Detect changes to modCount early.
for (int i = 0; (i < tab.length && modCount == mc); ++i) {
for (Node<K,V> e = tab[i]; e != null; e = e.next)
action.accept(e);
}
if (modCount != mc)
throw new ConcurrentModificationException();
}
}
}// Overrides of JDK8 Map extension methods
@Override
public V getOrDefault(Object key, V defaultValue) {
Node<K,V> e;
return (e = getNode(hash(key), key)) == null ? defaultValue : e.value;
}@Override
public V putIfAbsent(K key, V value) {
return putVal(hash(key), key, value, true, true);
}@Override
public boolean remove(Object key, Object value) {
return removeNode(hash(key), key, value, true, true) != null;
}@Override
public boolean replace(K key, V oldValue, V newValue) {
Node<K,V> e; V v;
if ((e = getNode(hash(key), key)) != null &&
((v = e.value) == oldValue || (v != null && v.equals(oldValue)))) {
e.value = newValue;
afterNodeAccess(e);
return true;
}
return false;
}@Override
public V replace(K key, V value) {
Node<K,V> e;
if ((e = getNode(hash(key), key)) != null) {
V oldValue = e.value;
e.value = value;
afterNodeAccess(e);
return oldValue;
}
return null;
}@Override
public V computeIfAbsent(K key,
Function<? super K, ? extends V> mappingFunction) {
if (mappingFunction == null)
throw new NullPointerException();
int hash = hash(key);
Node<K,V>[] tab; Node<K,V> first; int n, i;
int binCount = 0;
TreeNode<K,V> t = null;
Node<K,V> old = null;
if (size > threshold || (tab = table) == null ||
(n = tab.length) == 0)
n = (tab = resize()).length;
if ((first = tab[i = (n - 1) & hash]) != null) {
if (first instanceof TreeNode)
old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key);
else {
Node<K,V> e = first; K k;
do {
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k)))) {
old = e;
break;
}
++binCount;
} while ((e = e.next) != null);
}
V oldValue;
if (old != null && (oldValue = old.value) != null) {
afterNodeAccess(old);
return oldValue;
}
}
V v = mappingFunction.apply(key);
if (v == null) {
return null;
} else if (old != null) {
old.value = v;
afterNodeAccess(old);
return v;
}
else if (t != null)
t.putTreeVal(this, tab, hash, key, v);
else {
tab[i] = newNode(hash, key, v, first);
if (binCount >= TREEIFY_THRESHOLD - 1)
treeifyBin(tab, hash);
}
++modCount;
++size;
afterNodeInsertion(true);
return v;
}public V computeIfPresent(K key,
BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
if (remappingFunction == null)
throw new NullPointerException();
Node<K,V> e; V oldValue;
int hash = hash(key);
if ((e = getNode(hash, key)) != null &&
(oldValue = e.value) != null) {
V v = remappingFunction.apply(key, oldValue);
if (v != null) {
e.value = v;
afterNodeAccess(e);
return v;
}
else
removeNode(hash, key, null, false, true);
}
return null;
}@Override
public V compute(K key,
BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
if (remappingFunction == null)
throw new NullPointerException();
int hash = hash(key);
Node<K,V>[] tab; Node<K,V> first; int n, i;
int binCount = 0;
TreeNode<K,V> t = null;
Node<K,V> old = null;
if (size > threshold || (tab = table) == null ||
(n = tab.length) == 0)
n = (tab = resize()).length;
if ((first = tab[i = (n - 1) & hash]) != null) {
if (first instanceof TreeNode)
old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key);
else {
Node<K,V> e = first; K k;
do {
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k)))) {
old = e;
break;
}
++binCount;
} while ((e = e.next) != null);
}
}
V oldValue = (old == null) ? null : old.value;
V v = remappingFunction.apply(key, oldValue);
if (old != null) {
if (v != null) {
old.value = v;
afterNodeAccess(old);
}
else
removeNode(hash, key, null, false, true);
}
else if (v != null) {
if (t != null)
t.putTreeVal(this, tab, hash, key, v);
else {
tab[i] = newNode(hash, key, v, first);
if (binCount >= TREEIFY_THRESHOLD - 1)
treeifyBin(tab, hash);
}
++modCount;
++size;
afterNodeInsertion(true);
}
return v;
}@Override
public V merge(K key, V value,
BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
if (value == null)
throw new NullPointerException();
if (remappingFunction == null)
throw new NullPointerException();
int hash = hash(key);
Node<K,V>[] tab; Node<K,V> first; int n, i;
int binCount = 0;
TreeNode<K,V> t = null;
Node<K,V> old = null;
if (size > threshold || (tab = table) == null ||
(n = tab.length) == 0)
n = (tab = resize()).length;
if ((first = tab[i = (n - 1) & hash]) != null) {
if (first instanceof TreeNode)
old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key);
else {
Node<K,V> e = first; K k;
do {
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k)))) {
old = e;
break;
}
++binCount;
} while ((e = e.next) != null);
}
}
if (old != null) {
V v;
if (old.value != null)
v = remappingFunction.apply(old.value, value);
else
v = value;
if (v != null) {
old.value = v;
afterNodeAccess(old);
}
else
removeNode(hash, key, null, false, true);
return v;
}
if (value != null) {
if (t != null)
t.putTreeVal(this, tab, hash, key, value);
else {
tab[i] = newNode(hash, key, value, first);
if (binCount >= TREEIFY_THRESHOLD - 1)
treeifyBin(tab, hash);
}
++modCount;
++size;
afterNodeInsertion(true);
}
return value;
}@Override
public void forEach(BiConsumer<? super K, ? super V> action) {
Node<K,V>[] tab;
if (action == null)
throw new NullPointerException();
if (size > 0 && (tab = table) != null) {
int mc = modCount;
// Android-changed: Detect changes to modCount early.
for (int i = 0; (i < tab.length && mc == modCount); ++i) {
for (Node<K,V> e = tab[i]; e != null; e = e.next)
action.accept(e.key, e.value);
}
if (modCount != mc)
throw new ConcurrentModificationException();
}
}@Override
public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
Node<K,V>[] tab;
if (function == null)
throw new NullPointerException();
if (size > 0 && (tab = table) != null) {
int mc = modCount;
for (int i = 0; i < tab.length; ++i) {
for (Node<K,V> e = tab[i]; e != null; e = e.next) {
e.value = function.apply(e.key, e.value);
}
}
if (modCount != mc)
throw new ConcurrentModificationException();
}
}/* ------------------------------------------------------------ */
// Cloning and serialization/**
- Returns a shallow copy of this HashMap instance: the keys and
- values themselves are not cloned.
- @return a shallow copy of this map
*/
@SuppressWarnings(“unchecked”)
@Override
public Object clone() {
HashMap<K,V> result;
try {
result = (HashMap<K,V>)super.clone();
} catch (CloneNotSupportedException e) {
// this shouldn’t happen, since we are Cloneable
throw new InternalError(e);
}
result.reinitialize();
result.putMapEntries(this, false);
return result;
}
// These methods are also used when serializing HashSets
final float loadFactor() { return loadFactor; }
final int capacity() {
return (table != null) ? table.length :
(threshold > 0) ? threshold :
DEFAULT_INITIAL_CAPACITY;
}/**
- Save the state of the HashMap instance to a stream (i.e.,
- serialize it).
- @serialData The capacity of the HashMap (the length of the
-
bucket array) is emitted (int), followed by the
-
<i>size</i> (an int, the number of key-value
-
mappings), followed by the key (Object) and value (Object)
-
for each key-value mapping. The key-value mappings are
-
emitted in no particular order.
*/
private void writeObject(java.io.ObjectOutputStream s)
throws IOException {
int buckets = capacity();
// Write out the threshold, loadfactor, and any hidden stuff
s.defaultWriteObject();
s.writeInt(buckets);
s.writeInt(size);
internalWriteEntries(s);
}/**
-
Reconstitute the {@code HashMap} instance from a stream (i.e.,
-
deserialize it).
*/
private void readObject(java.io.ObjectInputStream s)
throws IOException, ClassNotFoundException {
// Read in the threshold (ignored), loadfactor, and any hidden stuff
s.defaultReadObject();
reinitialize();
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new InvalidObjectException("Illegal load factor: " +
loadFactor);
s.readInt(); // Read and ignore number of buckets
int mappings = s.readInt(); // Read number of mappings (size)
if (mappings < 0)
throw new InvalidObjectException("Illegal mappings count: " +
mappings);
else if (mappings > 0) { // (if zero, use defaults)
// Size the table using given load factor only if within
// range of 0.25…4.0
float lf = Math.min(Math.max(0.25f, loadFactor), 4.0f);
float fc = (float)mappings / lf + 1.0f;
int cap = ((fc < DEFAULT_INITIAL_CAPACITY) ?
DEFAULT_INITIAL_CAPACITY :
(fc >= MAXIMUM_CAPACITY) ?
MAXIMUM_CAPACITY :
tableSizeFor((int)fc));
float ft = (float)cap * lf;
threshold = ((cap < MAXIMUM_CAPACITY && ft < MAXIMUM_CAPACITY) ?
(int)ft : Integer.MAX_VALUE);
@SuppressWarnings({“rawtypes”,“unchecked”})
Node<K,V>[] tab = (Node<K,V>[])new Node[cap];
table = tab;// Read the keys and values, and put the mappings in the HashMap for (int i = 0; i < mappings; i++) { @SuppressWarnings("unchecked") K key = (K) s.readObject(); @SuppressWarnings("unchecked") V value = (V) s.readObject(); putVal(hash(key), key, value, false, false); }
}
}
/* ------------------------------------------------------------ */
// iteratorsabstract class HashIterator {
Node<K,V> next; // next entry to return
Node<K,V> current; // current entry
int expectedModCount; // for fast-fail
int index; // current slotHashIterator() { expectedModCount = modCount; Node<K,V>[] t = table; current = next = null; index = 0; if (t != null && size > 0) { // advance to first entry do {} while (index < t.length && (next = t[index++]) == null); } } public final boolean hasNext() { return next != null; } final Node<K,V> nextNode() { Node<K,V>[] t; Node<K,V> e = next; if (modCount != expectedModCount) throw new ConcurrentModificationException(); if (e == null) throw new NoSuchElementException(); if ((next = (current = e).next) == null && (t = table) != null) { do {} while (index < t.length && (next = t[index++]) == null); } return e; } public final void remove() { Node<K,V> p = current; if (p == null) throw new IllegalStateException(); if (modCount != expectedModCount) throw new ConcurrentModificationException(); current = null; K key = p.key; removeNode(hash(key), key, null, false, false); expectedModCount = modCount; }
}文章来源地址https://www.toymoban.com/news/detail-466478.html
final class KeyIterator extends HashIterator
implements Iterator {
public final K next() { return nextNode().key; }
}final class ValueIterator extends HashIterator
implements Iterator {
public final V next() { return nextNode().value; }
}final class EntryIterator extends HashIterator
implements Iterator<Map.Entry<K,V>> {
public final Map.Entry<K,V> next() { return nextNode(); }
}/* ------------------------------------------------------------ */
// spliteratorsstatic class HashMapSpliterator<K,V> {
final HashMap<K,V> map;
Node<K,V> current; // current node
int index; // current index, modified on advance/split
int fence; // one past last index
int est; // size estimate
int expectedModCount; // for comodification checksHashMapSpliterator(HashMap<K,V> m, int origin, int fence, int est, int expectedModCount) { this.map = m; this.index = origin; this.fence = fence; this.est = est; this.expectedModCount = expectedModCount; } final int getFence() { // initialize fence and size on first use int hi; if ((hi = fence) < 0) { HashMap<K,V> m = map; est = m.size; expectedModCount = m.modCount; Node<K,V>[] tab = m.table; hi = fence = (tab == null) ? 0 : tab.length; } return hi; } public final long estimateSize() { getFence(); // force init return (long) est; }
}
static final class KeySpliterator<K,V>
extends HashMapSpliterator<K,V>
implements Spliterator {
KeySpliterator(HashMap<K,V> m, int origin, int fence, int est,
int expectedModCount) {
super(m, origin, fence, est, expectedModCount);
}public KeySpliterator<K,V> trySplit() { int hi = getFence(), lo = index, mid = (lo + hi) >>> 1; return (lo >= mid || current != null) ? null : new KeySpliterator<>(map, lo, index = mid, est >>>= 1, expectedModCount); } public void forEachRemaining(Consumer<? super K> action) { int i, hi, mc; if (action == null) throw new NullPointerException(); HashMap<K,V> m = map; Node<K,V>[] tab = m.table; if ((hi = fence) < 0) { mc = expectedModCount = m.modCount; hi = fence = (tab == null) ? 0 : tab.length; } else mc = expectedModCount; if (tab != null && tab.length >= hi && (i = index) >= 0 && (i < (index = hi) || current != null)) { Node<K,V> p = current; current = null; do { if (p == null) p = tab[i++]; else { action.accept(p.key); p = p.next; } } while (p != null || i < hi); if (m.modCount != mc) throw new ConcurrentModificationException(); } } public boolean tryAdvance(Consumer<? super K> action) { int hi; if (action == null) throw new NullPointerException(); Node<K,V>[] tab = map.table; if (tab != null && tab.length >= (hi = getFence()) && index >= 0) { while (current != null || index < hi) { if (current == null) current = tab[index++]; else { K k = current.key; current = current.next; action.accept(k); if (map.modCount != expectedModCount) throw new ConcurrentModificationException(); return true; } } } return false; } public int characteristics() { return (fence < 0 || est == map.size ? Spliterator.SIZED : 0) | Spliterator.DISTINCT; }
}
static final class ValueSpliterator<K,V>
extends HashMapSpliterator<K,V>
implements Spliterator {
ValueSpliterator(HashMap<K,V> m, int origin, int fence, int est,
int expectedModCount) {
super(m, origin, fence, est, expectedModCount);
}public ValueSpliterator<K,V> trySplit() { int hi = getFence(), lo = index, mid = (lo + hi) >>> 1; return (lo >= mid || current != null) ? null : new ValueSpliterator<>(map, lo, index = mid, est >>>= 1, expectedModCount); } public void forEachRemaining(Consumer<? super V> action) { int i, hi, mc; if (action == null) throw new NullPointerException(); HashMap<K,V> m = map; Node<K,V>[] tab = m.table; if ((hi = fence) < 0) { mc = expectedModCount = m.modCount; hi = fence = (tab == null) ? 0 : tab.length; } else mc = expectedModCount; if (tab != null && tab.length >= hi && (i = index) >= 0 && (i < (index = hi) || current != null)) { Node<K,V> p = current; current = null; do { if (p == null) p = tab[i++]; else { action.accept(p.value); p = p.next; } } while (p != null || i < hi); if (m.modCount != mc) throw new ConcurrentModificationException(); } } public boolean tryAdvance(Consumer<? super V> action) { int hi; if (action == null) throw new NullPointerException(); Node<K,V>[] tab = map.table; if (tab != null && tab.length >= (hi = getFence()) && index >= 0) { while (current != null || index < hi) { if (current == null) current = tab[index++]; else { V v = current.value; current = current.next; action.accept(v); if (map.modCount != expectedModCount) throw new ConcurrentModificationException(); return true; } } } return false; } public int characteristics() { return (fence < 0 || est == map.size ? Spliterator.SIZED : 0); }
}
static final class EntrySpliterator<K,V>
extends HashMapSpliterator<K,V>
implements Spliterator<Map.Entry<K,V>> {
EntrySpliterator(HashMap<K,V> m, int origin, int fence, int est,
int expectedModCount) {
super(m, origin, fence, est, expectedModCount);
}public EntrySpliterator<K,V> trySplit() { int hi = getFence(), lo = index, mid = (lo + hi) >>> 1; return (lo >= mid || current != null) ? null : new EntrySpliterator<>(map, lo, index = mid, est >>>= 1, expectedModCount); } public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) { int i, hi, mc; if (action == null) throw new NullPointerException(); HashMap<K,V> m = map; Node<K,V>[] tab = m.table; if ((hi = fence) < 0) { mc = expectedModCount = m.modCount; hi = fence = (tab == null) ? 0 : tab.length; } else mc = expectedModCount; if (tab != null && tab.length >= hi && (i = index) >= 0 && (i < (index = hi) || current != null)) { Node<K,V> p = current; current = null; do { if (p == null) p = tab[i++]; else { action.accept(p); p = p.next; } } while (p != null || i < hi); if (m.modCount != mc) throw new ConcurrentModificationException(); } } public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) { int hi; if (action == null) throw new NullPointerException(); Node<K,V>[] tab = map.table; if (tab != null && tab.length >= (hi = getFence()) && index >= 0) { while (current != null || index < hi) { if (current == null) current = tab[index++]; else { Node<K,V> e = current; current = current.next; action.accept(e); if (map.modCount != expectedModCount) throw new ConcurrentModificationException(); return true; } } } return false; } public int characteristics() { return (fence < 0 || est == map.size ? Spliterator.SIZED : 0) | Spliterator.DISTINCT; }
}
/* ------------------------------------------------------------ */
// LinkedHashMap support/*
- The following package-protected methods are designed to be
- overridden by LinkedHashMap, but not by any other subclass.
- Nearly all other internal methods are also package-protected
- but are declared final, so can be used by LinkedHashMap, view
- classes, and HashSet.
*/
// Create a regular (non-tree) node
Node<K,V> newNode(int hash, K key, V value, Node<K,V> next) {
return new Node<>(hash, key, value, next);
}// For conversion from TreeNodes to plain nodes
Node<K,V> replacementNode(Node<K,V> p, Node<K,V> next) {
return new Node<>(p.hash, p.key, p.value, next);
}// Create a tree bin node
TreeNode<K,V> newTreeNode(int hash, K key, V value, Node<K,V> next) {
return new TreeNode<>(hash, key, value, next);
}// For treeifyBin
TreeNode<K,V> replacementTreeNode(Node<K,V> p, Node<K,V> next) {
return new TreeNode<>(p.hash, p.key, p.value, next);
}/**
- Reset to initial default state. Called by clone and readObject.
*/
void reinitialize() {
table = null;
entrySet = null;
keySet = null;
values = null;
modCount = 0;
threshold = 0;
size = 0;
}
// Callbacks to allow LinkedHashMap post-actions
void afterNodeAccess(Node<K,V> p) { }
void afterNodeInsertion(boolean evict) { }
void afterNodeRemoval(Node<K,V> p) { }// Called only from writeObject, to ensure compatible ordering.
void internalWriteEntries(java.io.ObjectOutputStream s) throws IOException {
Node<K,V>[] tab;
if (size > 0 && (tab = table) != null) {
for (int i = 0; i < tab.length; ++i) {
for (Node<K,V> e = tab[i]; e != null; e = e.next) {
s.writeObject(e.key);
s.writeObject(e.value);
}
}
}
}/* ------------------------------------------------------------ */
// Tree bins/**
-
Entry for Tree bins. Extends LinkedHashMap.Entry (which in turn
-
extends Node) so can be used as extension of either regular or
-
linked node.
*/
static final class TreeNode<K,V> extends LinkedHashMap.LinkedHashMapEntry<K,V> {
TreeNode<K,V> parent; // red-black tree links
TreeNode<K,V> left;
TreeNode<K,V> right;
TreeNode<K,V> prev; // needed to unlink next upon deletion
boolean red;
TreeNode(int hash, K key, V val, Node<K,V> next) {
super(hash, key, val, next);
}/**
- Returns root of tree containing this node.
*/
final TreeNode<K,V> root() {
for (TreeNode<K,V> r = this, p;😉 {
if ((p = r.parent) == null)
return r;
r = p;
}
}
/**
- Ensures that the given root is the first node of its bin.
*/
static <K,V> void moveRootToFront(Node<K,V>[] tab, TreeNode<K,V> root) {
int n;
if (root != null && tab != null && (n = tab.length) > 0) {
int index = (n - 1) & root.hash;
TreeNode<K,V> first = (TreeNode<K,V>)tab[index];
if (root != first) {
Node<K,V> rn;
tab[index] = root;
TreeNode<K,V> rp = root.prev;
if ((rn = root.next) != null)
((TreeNode<K,V>)rn).prev = rp;
if (rp != null)
rp.next = rn;
if (first != null)
first.prev = root;
root.next = first;
root.prev = null;
}
assert checkInvariants(root);
}
}
/**
- Finds the node starting at root p with the given hash and key.
- The kc argument caches comparableClassFor(key) upon first use
- comparing keys.
*/
final TreeNode<K,V> find(int h, Object k, Class<?> kc) {
TreeNode<K,V> p = this;
do {
int ph, dir; K pk;
TreeNode<K,V> pl = p.left, pr = p.right, q;
if ((ph = p.hash) > h)
p = pl;
else if (ph < h)
p = pr;
else if ((pk = p.key) == k || (k != null && k.equals(pk)))
return p;
else if (pl == null)
p = pr;
else if (pr == null)
p = pl;
else if ((kc != null ||
(kc = comparableClassFor(k)) != null) &&
(dir = compareComparables(kc, k, pk)) != 0)
p = (dir < 0) ? pl : pr;
else if ((q = pr.find(h, k, kc)) != null)
return q;
else
p = pl;
} while (p != null);
return null;
}
/**
- Calls find for root node.
*/
final TreeNode<K,V> getTreeNode(int h, Object k) {
return ((parent != null) ? root() : this).find(h, k, null);
}
/**
- Tie-breaking utility for ordering insertions when equal
- hashCodes and non-comparable. We don’t require a total
- order, just a consistent insertion rule to maintain
- equivalence across rebalancings. Tie-breaking further than
- necessary simplifies testing a bit.
*/
static int tieBreakOrder(Object a, Object b) {
int d;
if (a == null || b == null ||
(d = a.getClass().getName().
compareTo(b.getClass().getName())) == 0)
d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
-1 : 1);
return d;
}
/**
-
Forms tree of the nodes linked from this node.
-
@return root of tree
*/
final void treeify(Node<K,V>[] tab) {
TreeNode<K,V> root = null;
for (TreeNode<K,V> x = this, next; x != null; x = next) {
next = (TreeNode<K,V>)x.next;
x.left = x.right = null;
if (root == null) {
x.parent = null;
x.red = false;
root = x;
}
else {
K k = x.key;
int h = x.hash;
Class<?> kc = null;
for (TreeNode<K,V> p = root;😉 {
int dir, ph;
K pk = p.key;
if ((ph = p.hash) > h)
dir = -1;
else if (ph < h)
dir = 1;
else if ((kc == null &&
(kc = comparableClassFor(k)) == null) ||
(dir = compareComparables(kc, k, pk)) == 0)
dir = tieBreakOrder(k, pk);TreeNode<K,V> xp = p; if ((p = (dir <= 0) ? p.left : p.right) == null) { x.parent = xp; if (dir <= 0) xp.left = x; else xp.right = x; root = balanceInsertion(root, x); break; } } }
}
moveRootToFront(tab, root);
}
/**
- Returns a list of non-TreeNodes replacing those linked from
- this node.
*/
final Node<K,V> untreeify(HashMap<K,V> map) {
Node<K,V> hd = null, tl = null;
for (Node<K,V> q = this; q != null; q = q.next) {
Node<K,V> p = map.replacementNode(q, null);
if (tl == null)
hd = p;
else
tl.next = p;
tl = p;
}
return hd;
}
/**
-
Tree version of putVal.
*/
final TreeNode<K,V> putTreeVal(HashMap<K,V> map, Node<K,V>[] tab,
int h, K k, V v) {
Class<?> kc = null;
boolean searched = false;
TreeNode<K,V> root = (parent != null) ? root() : this;
for (TreeNode<K,V> p = root;😉 {
int dir, ph; K pk;
if ((ph = p.hash) > h)
dir = -1;
else if (ph < h)
dir = 1;
else if ((pk = p.key) == k || (k != null && k.equals(pk)))
return p;
else if ((kc == null &&
(kc = comparableClassFor(k)) == null) ||
(dir = compareComparables(kc, k, pk)) == 0) {
if (!searched) {
TreeNode<K,V> q, ch;
searched = true;
if (((ch = p.left) != null &&
(q = ch.find(h, k, kc)) != null) ||
((ch = p.right) != null &&
(q = ch.find(h, k, kc)) != null))
return q;
}
dir = tieBreakOrder(k, pk);
}TreeNode<K,V> xp = p; if ((p = (dir <= 0) ? p.left : p.right) == null) { Node<K,V> xpn = xp.next; TreeNode<K,V> x = map.newTreeNode(h, k, v, xpn); if (dir <= 0) xp.left = x; else xp.right = x; xp.next = x; x.parent = x.prev = xp; if (xpn != null) ((TreeNode<K,V>)xpn).prev = x; moveRootToFront(tab, balanceInsertion(root, x)); return null; }
}
}
/**
-
Removes the given node, that must be present before this call.
-
This is messier than typical red-black deletion code because we
-
cannot swap the contents of an interior node with a leaf
-
successor that is pinned by “next” pointers that are accessible
-
independently during traversal. So instead we swap the tree
-
linkages. If the current tree appears to have too few nodes,
-
the bin is converted back to a plain bin. (The test triggers
-
somewhere between 2 and 6 nodes, depending on tree structure).
*/
final void removeTreeNode(HashMap<K,V> map, Node<K,V>[] tab,
boolean movable) {
int n;
if (tab == null || (n = tab.length) == 0)
return;
int index = (n - 1) & hash;
TreeNode<K,V> first = (TreeNode<K,V>)tab[index], root = first, rl;
TreeNode<K,V> succ = (TreeNode<K,V>)next, pred = prev;
if (pred == null)
tab[index] = first = succ;
else
pred.next = succ;
if (succ != null)
succ.prev = pred;
if (first == null)
return;
if (root.parent != null)
root = root.root();
if (root == null || root.right == null ||
(rl = root.left) == null || rl.left == null) {
tab[index] = first.untreeify(map); // too small
return;
}
TreeNode<K,V> p = this, pl = left, pr = right, replacement;
if (pl != null && pr != null) {
TreeNode<K,V> s = pr, sl;
while ((sl = s.left) != null) // find successor
s = sl;
boolean c = s.red; s.red = p.red; p.red = c; // swap colors
TreeNode<K,V> sr = s.right;
TreeNode<K,V> pp = p.parent;
if (s == pr) { // p was s’s direct parent
p.parent = s;
s.right = p;
}
else {
TreeNode<K,V> sp = s.parent;
if ((p.parent = sp) != null) {
if (s == sp.left)
sp.left = p;
else
sp.right = p;
}
if ((s.right = pr) != null)
pr.parent = s;
}
p.left = null;
if ((p.right = sr) != null)
sr.parent = p;
if ((s.left = pl) != null)
pl.parent = s;
if ((s.parent = pp) == null)
root = s;
else if (p == pp.left)
pp.left = s;
else
pp.right = s;
if (sr != null)
replacement = sr;
else
replacement = p;
}
else if (pl != null)
replacement = pl;
else if (pr != null)
replacement = pr;
else
replacement = p;
if (replacement != p) {
TreeNode<K,V> pp = replacement.parent = p.parent;
if (pp == null)
root = replacement;
else if (p == pp.left)
pp.left = replacement;
else
pp.right = replacement;
p.left = p.right = p.parent = null;
}TreeNode<K,V> r = p.red ? root : balanceDeletion(root, replacement);
if (replacement == p) { // detach
TreeNode<K,V> pp = p.parent;
p.parent = null;
if (pp != null) {
if (p == pp.left)
pp.left = null;
else if (p == pp.right)
pp.right = null;
}
}
if (movable)
moveRootToFront(tab, r);
}
/**
-
Splits nodes in a tree bin into lower and upper tree bins,
-
or untreeifies if now too small. Called only from resize;
-
see above discussion about split bits and indices.
-
@param map the map
-
@param tab the table for recording bin heads
-
@param index the index of the table being split
-
@param bit the bit of hash to split on
*/
final void split(HashMap<K,V> map, Node<K,V>[] tab, int index, int bit) {
TreeNode<K,V> b = this;
// Relink into lo and hi lists, preserving order
TreeNode<K,V> loHead = null, loTail = null;
TreeNode<K,V> hiHead = null, hiTail = null;
int lc = 0, hc = 0;
for (TreeNode<K,V> e = b, next; e != null; e = next) {
next = (TreeNode<K,V>)e.next;
e.next = null;
if ((e.hash & bit) == 0) {
if ((e.prev = loTail) == null)
loHead = e;
else
loTail.next = e;
loTail = e;
++lc;
}
else {
if ((e.prev = hiTail) == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
++hc;
}
}if (loHead != null) {
if (lc <= UNTREEIFY_THRESHOLD)
tab[index] = loHead.untreeify(map);
else {
tab[index] = loHead;
if (hiHead != null) // (else is already treeified)
loHead.treeify(tab);
}
}
if (hiHead != null) {
if (hc <= UNTREEIFY_THRESHOLD)
tab[index + bit] = hiHead.untreeify(map);
else {
tab[index + bit] = hiHead;
if (loHead != null)
hiHead.treeify(tab);
}
}
}
/* ------------------------------------------------------------ */
// Red-black tree methods, all adapted from CLRstatic <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
TreeNode<K,V> p) {
TreeNode<K,V> r, pp, rl;
if (p != null && (r = p.right) != null) {
if ((rl = p.right = r.left) != null)
rl.parent = p;
if ((pp = r.parent = p.parent) == null)
(root = r).red = false;
else if (pp.left == p)
pp.left = r;
else
pp.right = r;
r.left = p;
p.parent = r;
}
return root;
}static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
TreeNode<K,V> p) {
TreeNode<K,V> l, pp, lr;
if (p != null && (l = p.left) != null) {
if ((lr = p.left = l.right) != null)
lr.parent = p;
if ((pp = l.parent = p.parent) == null)
(root = l).red = false;
else if (pp.right == p)
pp.right = l;
else
pp.left = l;
l.right = p;
p.parent = l;
}
return root;
}static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
TreeNode<K,V> x) {
x.red = true;
for (TreeNode<K,V> xp, xpp, xppl, xppr;😉 {
if ((xp = x.parent) == null) {
x.red = false;
return x;
}
else if (!xp.red || (xpp = xp.parent) == null)
return root;
if (xp == (xppl = xpp.left)) {
if ((xppr = xpp.right) != null && xppr.red) {
xppr.red = false;
xp.red = false;
xpp.red = true;
x = xpp;
}
else {
if (x == xp.right) {
root = rotateLeft(root, x = xp);
xpp = (xp = x.parent) == null ? null : xp.parent;
}
if (xp != null) {
xp.red = false;
if (xpp != null) {
xpp.red = true;
root = rotateRight(root, xpp);
}
}
}
}
else {
if (xppl != null && xppl.red) {
xppl.red = false;
xp.red = false;
xpp.red = true;
x = xpp;
}
else {
if (x == xp.left) {
root = rotateRight(root, x = xp);
xpp = (xp = x.parent) == null ? null : xp.parent;
}
if (xp != null) {
xp.red = false;
if (xpp != null) {
xpp.red = true;
root = rotateLeft(root, xpp);
}
}
}
}
}
}static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
TreeNode<K,V> x) {
for (TreeNode<K,V> xp, xpl, xpr;😉 {
if (x == null || x == root)
return root;
else if ((xp = x.parent) == null) {
x.red = false;
return x;
}
else if (x.red) {
x.red = false;
return root;
}
else if ((xpl = xp.left) == x) {
if ((xpr = xp.right) != null && xpr.red) {
xpr.red = false;
xp.red = true;
root = rotateLeft(root, xp);
xpr = (xp = x.parent) == null ? null : xp.right;
}
if (xpr == null)
x = xp;
else {
TreeNode<K,V> sl = xpr.left, sr = xpr.right;
if ((sr == null || !sr.red) &&
(sl == null || !sl.red)) {
xpr.red = true;
x = xp;
}
else {
if (sr == null || !sr.red) {
if (sl != null)
sl.red = false;
xpr.red = true;
root = rotateRight(root, xpr);
xpr = (xp = x.parent) == null ?
null : xp.right;
}
if (xpr != null) {
xpr.red = (xp == null) ? false : xp.red;
if ((sr = xpr.right) != null)
sr.red = false;
}
if (xp != null) {
xp.red = false;
root = rotateLeft(root, xp);
}
x = root;
}
}
}
else { // symmetric
if (xpl != null && xpl.red) {
xpl.red = false;
xp.red = true;
root = rotateRight(root, xp);
xpl = (xp = x.parent) == null ? null : xp.left;
}
if (xpl == null)
x = xp;
else {
TreeNode<K,V> sl = xpl.left, sr = xpl.right;
if ((sl == null || !sl.red) &&
(sr == null || !sr.red)) {
xpl.red = true;
x = xp;
}
else {
if (sl == null || !sl.red) {
if (sr != null)
sr.red = false;
xpl.red = true;
root = rotateLeft(root, xpl);
xpl = (xp = x.parent) == null ?
null : xp.left;
}
if (xpl != null) {
xpl.red = (xp == null) ? false : xp.red;
if ((sl = xpl.left) != null)
sl.red = false;
}
if (xp != null) {
xp.red = false;
root = rotateRight(root, xp);
}
x = root;
}
}
}
}
}/**
- Recursive invariant check
*/
static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
tb = t.prev, tn = (TreeNode<K,V>)t.next;
if (tb != null && tb.next != t)
return false;
if (tn != null && tn.prev != t)
return false;
if (tp != null && t != tp.left && t != tp.right)
return false;
if (tl != null && (tl.parent != t || tl.hash > t.hash))
return false;
if (tr != null && (tr.parent != t || tr.hash < t.hash))
return false;
if (t.red && tl != null && tl.red && tr != null && tr.red)
return false;
if (tl != null && !checkInvariants(tl))
return false;
if (tr != null && !checkInvariants(tr))
return false;
return true;
}
}
- Returns root of tree containing this node.
}
到了这里,关于HashMap原理(三):容量、加载因子、大小的含义的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!