【案例实战】Java整合hudi-client 0.11.1

这篇具有很好参考价值的文章主要介绍了【案例实战】Java整合hudi-client 0.11.1。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1.Linux部署hudi环境

(1)安装maven-3.5.4、jdk1.8环境

# 解压maven,重命名
tar -xf apache-maven-3.5.4-bin.tar.gz -C /usr/local/
mv apache-maven-3.5.4 maven

# 解压jdk,重命名
tar -xf jdk-8u212-linux-x64.tar.gz -C /usr/local/
mv jdk1.8.0_212 jdk

# 配置环境变量
vi /etc/profile

# 添加如下配置:
# JAVA HOME
JAVA_HOME=/usr/local/jdk
export JAVA_HOME
CLASSPATH=.:$JAVA_HOME/lib
export CLASSPATH
PATH=$PATH:$JAVA_HOME/bin:$CLASSPATH
export PATH
# MAVEN HOME
MAVEN_HOME=/usr/local/maven
export MAVEN_HOME
PATH=$PATH:$MAVEN_HOME/bin
export PATH

# 刷新配置
source /etc/profile
# 验证环境配置
java -version
mvn -version

【案例实战】Java整合hudi-client 0.11.1

(2)下载Hudi源码包

wget https://archive.apache.org/dist/hudi/0.9.0/hudi-0.9.0.src.tgz

(3)配置Maven镜像,在maven包下conf目录下setting.xml文件

<mirror>
    <id>alimaven</id>
    <name>aliyun maven</name>
    <url>http://maven.aliyun.com/nexus/content/groups/public/</url>
    <mirrorOf>central</mirrorOf>
</mirror>
<mirror>
    <id>aliyunmaven</id>
    <mirrorOf>*</mirrorOf>
    <name>阿里云spring插件仓库</name>
    <url>https://maven.aliyun.com/repository/spring-plugin</url>
</mirror>
<mirror>
    <id>repo2</id>
    <name>Mirror from Maven Repo2</name>
    <url>https://repo.spring.io/plugins-release/</url>
    <mirrorOf>central</mirrorOf>
</mirror>
<mirror>
    <id>UK</id>
    <name>UK Central</name>
    <url>http://uk.maven.org/maven2</url>
    <mirrorOf>central</mirrorOf>
</mirror>
<mirror>
    <id>jboss-public-repository-group</id>
    <name>JBoss Public Repository Group</name>
    <url>http://repository.jboss.org/nexus/content/groups/public</url>
    <mirrorOf>central</mirrorOf>
</mirror>
<mirror>
    <id>CN</id>
    <name>OSChina Central</name>
    <url>http://maven.oschina.net/content/groups/public/</url>
    <mirrorOf>central</mirrorOf>
</mirror>
<mirror>
    <id>google-maven-central</id>
    <name>GCS Maven Central mirror Asia Pacific</name>
    <url>https://maven-central-asia.storage-download.googleapis.com/maven2/</url>
    <mirrorOf>central</mirrorOf>
</mirror>
<mirror>
    <id>confluent</id>
    <name>confluent maven</name>
    <url>http://packages.confluent.io/maven/</url>
    <mirrorOf>confluent</mirrorOf>
</mirror>

(4)编译hudi源码包

# 将下载好的hudi解压
tar -xf hudi-0.9.0.src.tgz -C /usr/local/

cd /usr/local/hudi-0.9.0

# 执行命令
mvn clean install -DskipTests -DskipITs -Dscala-2.12 -Dspark3

(5)编译成功后,进入hudi-cli,执行./hudi-cli.sh目录测试

./hudi-cli.sh

【案例实战】Java整合hudi-client 0.11.1

(6)安装HDFS

# 解压hadoop安装包
tar -zxf hadoop-2.7.3.tar.gz -C /usr/local/
cd /usr/local/
# 创建软连接
ln -s hadoop-2.7.3 hadoop

# 配置环境变量
vi /etc/profile

# HADOOP HOME
export HADOOP_HOME=/usr/local/hadoop
export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop
export HADOOP_COMMON_HOME=$HADOOP_HOME
export HADOOP_HDFS_HOME=$HADOOP_HOME
export HADOOP_YARN_HOME=$HADOOP_HOME
export HADOOP_MAPRED_HOME=$HADOOP_HOME
export PATH=$PATH:$HADOOP_HOME/bin:$HADOOP_HOME/sbin

source /etc/profile

# 在Hadoop环境变量脚本配置JDK和HADOOP安装目录
vi /usr/local/hadoop/etc/hadoop/hadoop-env.sh

# 添加如下内容
export JAVA_HOME=/usr/local/jdk
export HADOOP_HOME=/usr/local/hadoop

# 配置Hadoop Common模块公共属性,编辑core-site.xml文件
	<property>
		<name>fs.defaultFS</name>
		<!-- 以自己的ip地址为准 -->
		<value>hdfs://192.168.139.100:8020</value>
	</property>
	<property>
		<name>hadoop.tmp.dir</name>
		<value>/hadoop/datas</value>
	</property>
	<property>
		<name>hadoop.http.staticuser.user</name>
		<value>root</value>
	</property>
# 配置HDFS分布式文件系统相关属性,hdfs-site.xml
<property>
		<name>dfs.namenode.name.dir</name>
		<value>/hadoop/datas/dfs/nn</value>
	</property>
	<property>
		<name>dfs.datanode.data.dir</name>
		<value>/hadoop/datas/dfs/dn</value>
	</property>
	
	<property>
		<name>dfs.replication</name>
		<value>1</value>
	</property>
	<property>
		<name>dfs.permissions.enabled</name>
		<value>false</value>
	</property>
	<property>
		<name>dfs.datanode.data.dir.perm</name>
		<value>750</value>
	</property>
# 创建HDFS所需的目录
mkdir -p /hadoop/datas/dfs/nn
mkdir -p /hadoop/datas/dfs/dn
mkdir -p /hadoop/datas
# 配置HDFS集群中从节点DataNode所运行机器
vi /usr/local/hadoop/etc/hadoop/workers
# 增加配置:
192.168.139.100
# 格式化HDFS
 hdfs namenode -format
# 启动HDFS集群
hadoop-daemon.sh start namenode
hadoop-daemon.sh start datanode

# 访问HDFS UI 
http://192.168.139.100:50070/

【案例实战】Java整合hudi-client 0.11.1

(7)安装Spark 3.x

# 解压软件包
tar -zxf /usr/local/software/spark-3.0.0-bin-hadoop2.7.tgz -C /usr/local/

cd /usr/local/

# 创建软链接
ln -s /usr/local/spark-3.0.0-bin-hadoop2.7 /usr/local/spark

# 安装scala
tar -zxf /usr/local/softwares/scala-2.12.10.tgz -C /usr/local/
ln -s /usr/local/scala-2.12.10 /usr/local/scala

# 设置环境变量
vi /etc/profile

# SCALA_HOME
export SCALA_HOME=/usr/local/scala
export PATH=$PATH:$SCALA_HOME/bin

source /etc/profile
# 修改配置spark名称
cd /usr/local/spark/conf

# 修改配置文件名称
cp -p spark-env.sh.template spark-env.sh.template.bak
mv spark-env.sh.template spark-env.sh

# 编辑文件
vi spark-env.sh

# 修改配置文件内容
JAVA_HOME=/usr/local/jdk
SCALA_HOME=/usr/local/scala
HADOOP_CONF_DIR=/usr/local/hadoop/etc/hadoop
# 本地模式启动spark-shell
cd /usr/local/spark
bin/spark-shell --master local[2]

【案例实战】Java整合hudi-client 0.11.1

2.java整合hudi

(1)创建maven工程添加依赖

		<dependency>
            <groupId>org.apache.hudi</groupId>
            <artifactId>hudi-java-client</artifactId>
            <version>0.11.1</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hudi</groupId>
            <artifactId>hudi-examples</artifactId>
            <version>0.11.1</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hudi</groupId>
            <artifactId>hudi-examples-common</artifactId>
            <version>0.11.1</version>
        </dependency>
        <!--JSON-->
        <dependency>
            <groupId>com.alibaba</groupId>
            <artifactId>fastjson</artifactId>
            <version>1.2.83</version>
        </dependency>
        <dependency>
            <groupId>org.apache.parquet</groupId>
            <artifactId>parquet-avro</artifactId>
            <version>1.10.1</version>
        </dependency>
        <dependency>
            <groupId>org.apache.avro</groupId>
            <artifactId>avro</artifactId>
            <version>1.10.1</version>
        </dependency>

(2)封装HoodieClient类,提供对Hoodie的增删改

/**
 * @description hudi-client增删改查
 * @author lixiang
 */
public class HoodieClient {

    private HoodieJavaWriteClient<HoodieAvroPayload> client;

    private String tableFormat;

    /**
     * HDFS 路径
     */
    private final static String DEFAULT_HDFS_PATH = "hdfs://192.168.139.100:8020";

    /**
     * 默认HDFS 存放的路径
     */
    private final static String DEFAULT_HDFS_DIR = "usr/hudi/warehouse";

    // ==============================构造方法开始==============================
    public HoodieClient(String hdfsPath, String hdfsDir, String tableName, String tableFormat,HoodieTableType tableType) {
        this.tableFormat = tableFormat;
        initHuDiClient(hdfsPath,hdfsDir,tableName,tableFormat,tableType);
    }
	//指定tableName、tableFormat和表类型,指定hdfs路径
    public HoodieClient(String hdfsDir, String tableName, String tableFormat,HoodieTableType tableType) {
        this(DEFAULT_HDFS_PATH,hdfsDir,tableName,tableFormat,tableType);
    }
	//指定tableName、tableFormat和指定hdfs路径,COPY_ON_WRITE类型表
    public HoodieClient(String hdfsDir, String tableName, String tableFormat) {
        this(DEFAULT_HDFS_PATH,hdfsDir,tableName,tableFormat,HoodieTableType.COPY_ON_WRITE);
    }
	//指定tableName、tableFormat和表类型,默认hdfs路径
    public HoodieClient(String tableName, String tableFormat,HoodieTableType tableType) {
        this(DEFAULT_HDFS_PATH,DEFAULT_HDFS_DIR,tableName,tableFormat,tableType);
    }
	//指定tableName和tableFormat,默认hdfs路径,COPY_ON_WRITE类型表
    public HoodieClient(String tableName, String tableFormat) {
        this(DEFAULT_HDFS_PATH,DEFAULT_HDFS_DIR,tableName,tableFormat,HoodieTableType.COPY_ON_WRITE);
    }
    // ==============================构造方法结束==============================


    /**
     * 初始化HoodieJavaWriteClient
     * @param hdfsPath
     * @param hdfsDir
     * @param tableName
     * @param tableFormat
     * @param tableType
     */
    private void initHuDiClient(String hdfsPath,String hdfsDir, String tableName, String tableFormat,HoodieTableType tableType){
        // 初始化Hoodie表
        String tablePath = hdfsPath+"/"+hdfsDir+"/"+tableName;
        // 创建HDFS路径
        Configuration hadoopConf = new Configuration();
        Path path = new Path(tablePath);
        FileSystem fileSystem = FSUtils.getFs(tablePath, hadoopConf);
        try {
            // 检查路径是否存在
            if (!fileSystem.exists(path)) {
                // 初始化Hoodie Table 创建Hoodie表的tablePath,写入初始化元数据信息
                HoodieTableMetaClient.withPropertyBuilder()
                        .setTableType(tableType.name())
                        .setTableName(tableName)
                        .setPayloadClassName(HoodieAvroPayload.class.getName())
                        .initTable(hadoopConf, tablePath);
            }
        } catch (IOException e) {
            throw new RuntimeException("初始化表Hoodie表异常,"+tableName);
        }
        // 创建write client conf
        HoodieWriteConfig huDiWriteConf = HoodieWriteConfig.newBuilder()
                // 数据schema
                .withSchema(tableFormat)
                // 数据插入更新并行度
                .withParallelism(2, 2)
                // 数据删除并行度
                .withDeleteParallelism(2)
                // HuDi表索引类型,BLOOM
                .withIndexConfig(HoodieIndexConfig.newBuilder().withIndexType(HoodieIndex.IndexType.BLOOM).build())
                // 合并
                .withCompactionConfig(HoodieCompactionConfig.newBuilder().archiveCommitsWith(20, 30).build())
                //.withEmbeddedTimelineServerEnabled(false)
                .withPath(tablePath)
                .forTable(tableName)
                .build();
        /*huDiWriteConf.getProps().setProperty(KeyGeneratorOptions.PARTITIONPATH_FIELD_NAME.key(),"table_name");
        huDiWriteConf.getProps().setProperty(KeyGeneratorOptions.RECORDKEY_FIELD_NAME.key(),"uuid");*/

        // 获得HuDi write client
        this.client = new HoodieJavaWriteClient<>(new HoodieJavaEngineContext(hadoopConf), huDiWriteConf);
    }

    /**
     * 单条插入Hoodie数据
     * @param jsonObject
     */
    public void upsertOne(JSONObject insertObject){
        upsert(Arrays.asList(insertObject));
    }

    /**
     * 批量插入Hoodie数据
     * @param jsonObject
     */
    public void upsertBatch(List<JSONObject> insertObjects){
        upsert(insertObjects);
    }

    public void deleteOne(String primaryKey,String tableName){
        delete(Arrays.asList(primaryKey),tableName);
    }

    public void deleteBatch(List<String> primaryKeys,String tableName){
        delete(primaryKeys,tableName);
    }

    /**
     * 删除逻辑
     * @param primaryKeys
     * @param tableName
     */
    private void delete(List<String> primaryKeys,String tableName){
        String newCommitTime = client.startCommit();
        List<HoodieKey> deleteKeys = primaryKeys.stream().map(key -> new HoodieKey(key,tableName)).collect(Collectors.toList());
        client.delete(deleteKeys, newCommitTime);
    }
    /**
     * 新增修改公用操作
     * @param insertObjects
     * @param primaryKey
     */
    private void upsert(List<JSONObject> insertObjects){
        String newCommitTime = client.startCommit();
        Schema avroSchema = new Schema.Parser().parse(tableFormat);
        List<HoodieRecord<HoodieAvroPayload>> hoodieRecords = insertObjects.stream().map(obj -> {
            String tableName = obj.getString("table_name");
            String uuid = obj.getString("uuid");
            GenericRecord genericRecord = new GenericData.Record(avroSchema);
            obj.forEach(genericRecord::put);
            HoodieKey hoodieKey = new HoodieKey(uuid, tableName);
            HoodieAvroPayload payload = new HoodieAvroPayload(Option.of(genericRecord));
            return (HoodieRecord<HoodieAvroPayload>) new HoodieAvroRecord<>(hoodieKey, payload);
        }).collect(Collectors.toList());

        // 获取upsertStatus
        client.upsert(hoodieRecords, newCommitTime);
    }

    /**
     * 客户端关闭方法
     */
    public void close(){
        client.close();
    }

}

(3)创建Schema,自定义表结构的JSON数据

	//根据自己的表结构进行编写
	private static String getTableFormat(String tableName){
        JSONObject field1 = new JSONObject();
        field1.put("name","uuid");
        field1.put("type","string");
        JSONObject field2 = new JSONObject();
        field2.put("name","table_name");
        field2.put("type","string");
        JSONObject field3 = new JSONObject();
        field3.put("name","date");
        field3.put("type","string");
        JSONArray fields = new JSONArray();
        fields.add(field1);
        fields.add(field2);
        fields.add(field3);
        JSONObject schema = new JSONObject();
        schema.put("type","record");
        schema.put("name",tableName);
        schema.put("fields",fields);
        return schema.toJSONString();
    }
    public static void main(String[] args) {
        String tableName = "data_raw_cow";
        // 获取表的JSON结构
        String tableFormat = getTableFormat(tableName);
        System.out.println(tableFormat);
    }
运行结果:
{
    "name":"data_raw_cow",
    "type":"record",
    "fields":[
        {
            "name":"uuid",
            "type":"string"
        },
        {
            "name":"table_name",
            "type":"string"
        },
        {
            "name":"date",
            "type":"string"
        }
    ]
}

(4)随机获取表名方法(测试)

	private static List<String> tableNames;

    static{
        tableNames = Arrays.asList("table_name1","table_name2","table_name3","table_name4","table_name5","table_name6");
    }
    
    private static String getTableName(){
        Random random = new Random();
        return tableNames.get(random.nextInt(tableNames.size()));
    }

(5)测试新增10条数据

 public static void main(String[] args) {

        String tableName = "data_raw_cow";
        // 获取表的JSON结构
        String tableFormat = getTableFormat(tableName);
        System.out.println(tableFormat);
        List<JSONObject> list = new ArrayList<>();
        for (int i = 0; i < 10; i++) {
            JSONObject json = new JSONObject();
            json.put("uuid",UUID.randomUUID().toString());
            json.put("table_name",getTableName());
            json.put("date", String.valueOf(LocalDateTime.now()));
            list.add(json);
        }
        HoodieClient client = new HoodieClient(tableName,tableFormat);
        client.upsertBatch(list);
        client.close();
    }

【案例实战】Java整合hudi-client 0.11.1

(6)修改一条数据

【案例实战】Java整合hudi-client 0.11.1

	/**
     * 修改测试数据,修改uuid为1dd87dd5-8e14-4562-9234-51247264968d,table_name为table_name6的数据,将日期改成xxxxxxxxxx
     * @return
     */
    private static JSONObject getUpdateOneData(){
        JSONObject jsonObject = new JSONObject();
        jsonObject.put("uuid","1dd87dd5-8e14-4562-9234-51247264968d");
        jsonObject.put("table_name","table_name6");
        jsonObject.put("date","xxxxxxxxxx");
        return jsonObject;
    }
    
    public static void main(String[] args) {

        String tableName = "data_raw_cow";
        // 获取表的JSON结构
        String tableFormat = getTableFormat(tableName);
        JSONObject updateOneData = getUpdateOneData();
        HoodieClient client = new HoodieClient(tableName,tableFormat);
        client.upsertOne(updateOneData);
        client.close();
    }

【案例实战】Java整合hudi-client 0.11.1

(7)测试删除数据,删除数据主要是拼接主键,按照HoodieKey去删除数据

public static void main(String[] args) {

        String tableName = "data_raw_cow";
        // 获取表的JSON结构
        String tableFormat = getTableFormat(tableName);
        HoodieClient client = new HoodieClient(tableName,tableFormat);
        client.deleteOne("1dd87dd5-8e14-4562-9234-51247264968d","table_name6");
        client.close();
    }

【案例实战】Java整合hudi-client 0.11.1

3.Spark整合hudi

Spark整合hudi这块主要是上述查询验证用到,也可以在Spark命令行去执行查看hudi数据

  • idea怎末运行scala代码配置:
    • https://www.jb51.net/article/216785.htm
    • https://blog.csdn.net/qq_53891711/article/details/123149847

(1)创建maven工程,引入依赖,采用scala语言,下面是pom.xml文件内容

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>com.lixiang</groupId>
    <artifactId>hudi_scala</artifactId>
    <version>1.0-SNAPSHOT</version>
    <repositories>
        <repository>
            <id>aliyun</id>
            <url>http://maven.aliyun.com/nexus/content/groups/public/</url>
        </repository>
        <repository>
            <id>cloudera</id>
            <url>https://repository.cloudera.com/artifactory/cloudera-repos/</url>
        </repository>
        <repository>
            <id>jboss</id>
            <url>http://repository.jboss.com/nexus/content/groups/public</url>
        </repository>
    </repositories>
    <properties>
        <maven.compiler.source>8</maven.compiler.source>
        <maven.compiler.target>8</maven.compiler.target>
        <scala.version>2.12.10</scala.version>
        <scala.binary.version>2.12</scala.binary.version>
        <spark.version>3.0.0</spark.version>
        <hadoop.version>2.7.3</hadoop.version>
        <hudi.version>0.9.0</hudi.version>
    </properties>

    <dependencies>
        <!-- 依赖Scala语言 -->
        <dependency>
            <groupId>org.scala-lang</groupId>
            <artifactId>scala-library</artifactId>
            <version>${scala.version}</version>
        </dependency>
        <!-- Spark Core 依赖 -->
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-core_${scala.binary.version}</artifactId>
            <version>${spark.version}</version>
        </dependency>
        <!-- Spark SQL 依赖 -->
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-sql_${scala.binary.version}</artifactId>
            <version>${spark.version}</version>
        </dependency>

        <!-- Hadoop Client 依赖 -->
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-client</artifactId>
            <version>${hadoop.version}</version>
        </dependency>

        <!-- hudi-spark3 -->
        <dependency>
            <groupId>org.apache.hudi</groupId>
            <artifactId>hudi-spark3-bundle_2.12</artifactId>
            <version>${hudi.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-avro_2.12</artifactId>
            <version>${spark.version}</version>
        </dependency>
    </dependencies>

    <build>
        <outputDirectory>target/classes</outputDirectory>
        <testOutputDirectory>target/test-classes</testOutputDirectory>
        <resources>
            <resource>
                <directory>${project.basedir}/src/main/resources</directory>
            </resource>
        </resources>
        <!-- Maven 编译的插件 -->
        <plugins>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-compiler-plugin</artifactId>
                <version>3.0</version>
                <configuration>
                    <source>1.8</source>
                    <target>1.8</target>
                    <encoding>UTF-8</encoding>
                </configuration>
            </plugin>
            <plugin>
                <groupId>net.alchim31.maven</groupId>
                <artifactId>scala-maven-plugin</artifactId>
                <version>3.2.0</version>
                <executions>
                    <execution>
                        <goals>
                            <goal>compile</goal>
                            <goal>testCompile</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>
        </plugins>
    </build>

</project>

(2)编写scala代码文章来源地址https://www.toymoban.com/news/detail-466891.html

import org.apache.spark.sql.{DataFrame, SparkSession}

object HuDiClientTest {
  def main(args: Array[String]): Unit = {
    //创建SparkSession实例对象,设置属性
    val spark: SparkSession = {
      SparkSession.builder()
        .appName(this.getClass.getSimpleName.stripSuffix("$"))
        .master("local[2]")
        //设置序列化方式:Kryo
        .config("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
        .getOrCreate()
    }
    val tableName: String = "data_raw_cow"
    val tablePath: String = "/usr/hudi/warehouse/" + tableName
    //查询数据,才采用Snapshot快照方式从Hudi表中查询数据
    queryData(spark,tablePath)

  }

  /**
   * 查询hudi数据
   * @param spark
   * @param tablePath
   */
  def queryData(spark: SparkSession, tablePath: String): Unit = {
    spark.read.format("hudi").load(tablePath).createOrReplaceTempView("hudi_table")
    spark.sql("select * from hudi_table").show(false)
  }

}

到了这里,关于【案例实战】Java整合hudi-client 0.11.1的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • SpringBoot整合ElasticSearch之Java High Level REST Client

    1 搭建SpringBoot工程 2 引入ElasticSearch相关坐标。 3 编写核心配置类 编写核心配置文件: 这里可以不写在配置,可以直接写在代码中,只是一般都是写在配置文件中 编写核心配置类 4 测试客户端对象 记得把maven的单元测试关了 注意:使用@Autowired注入RestHighLevelClient 如果报红线

    2024年02月05日
    浏览(51)
  • Java 11 HTTP Client库的使用

    每种编程语言里最常用的库恐怕是Http请求库了,如python里的requests包,nodejs里的request模块。 在Java世界里,也是百花齐放,山头林立。常用的有: HttpURLConnection: 最早的JDK提供的类 Java 11提供的HttpClient Apache HttpComponents项目中的HTTPClient Square提供的OkHttpClient Spring 自带的WebClien

    2024年02月09日
    浏览(32)
  • JAVA学习-网络编程.Java11标准化的HTTP Client

            Java 11引入了标准化的HTTP Client,它提供了一种现代化、灵活且易于使用的方式来进行HTTP通信。下面是关于Java 11标准化的HTTP Client的概述以及与其他比较和高级应用的说明:         Java 11标准化的HTTP Client是一种替代HttpURLConnection的新的HTTP客户端库。它提供了更

    2024年04月09日
    浏览(36)
  • 【案例实战】SpringBoot整合阿里云文件上传OSS

    1.需求背景 C端业务用户头像上传 海量图片音频、视频存储 用户行为日志存储 (1)阿里云OSS介绍 对象存储OSS(Object Storage Service)是阿里云提供的海量、安全、低成本、高持久的云存储服务。其数据设计持久性不低于99.9999999999%(12个9),服务设计可用性不低于99.995%。 OSS具

    2024年02月06日
    浏览(52)
  • 【案例实战】SpringBoot整合EasyExcel实现列表导出功能

    这篇文章会给大家实操一个关于列表导出成excel表格的功能,相信大家在日常工作中也会遇到列表导出的需求,看完本篇文章那么你就可以轻松的去整合列表导出的功能。 本次使用的导出工具是阿里巴巴开源的EasyExcel,关于EasyExcel我这里简单的介绍一下: 我们知道Java解析、

    2024年02月08日
    浏览(49)
  • RabbitMq整合Springboot超全实战案例+图文演示+源码自取

    目录 介绍 简单整合 简单模式 定义 代码示例  work模式 定义 代码示例 pubsub模式 定义 代码示例 routing模式  定义 代码示例  top模式 定义 代码 下单付款加积分示例 介绍 代码  可靠性投递示例 介绍 代码 交换机投递确认回调  队列投递确认回调  ​延迟消息场景示例 介绍 代

    2024年02月03日
    浏览(41)
  • Spring Cloud实战案例 │ Apollo和Zuul的整合开发

    Apollo是携程研发的开源配置管理中心,能够集中管理应用于不同环境、不同集群的配置,配置修改后能够实时推送到应用端,并且具备规范的权限、流程治理等特性。 本案例结合一个案例介绍Apollo和Zuul的整合开发。整个应用分为4个微服务项目,分别是Eureka服务器项目mweath

    2024年02月14日
    浏览(33)
  • 【案例实战】SpringBoot整合Redis的GEO实现查找附近门店功能

    像我们平常美团点外卖的时候,都会看到一个商家距离我们多少米。还有类似QQ附近的人,我们能看到附近的人距离我们有多少米。 那么这些业务是怎么做的呢?是如何实现 基于位置的附近服务 系统呢。 在去了解基于位置的附近服务之前,我们先来看一下什么是GIS技术。

    2024年02月10日
    浏览(36)
  • 【案例实战】SpringBoot整合Redis实现缓存分页数据查询

    正式观看本文之前,设想一个问题,高并发情况下,首页列表数据怎么做? 类似淘宝首页,这些商品是从数据库中查出来的吗?答案肯定不是,在高并发的情况下,数据库是扛不住的,那么我们要怎么去扛住C端大并发量呢,这块我们可以借助Redis,我们知道Redis是一个基于内

    2024年02月09日
    浏览(53)
  • 【项目实战】一、Spring boot整合JWT、Vue案例展示用户鉴权

    【项目实战】Spring boot整合JWT、Vue案例展示用户鉴权 【微服务实战】JWT

    2024年02月09日
    浏览(50)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包