数据聚合和联邦学习,常见的聚合有三类

这篇具有很好参考价值的文章主要介绍了数据聚合和联邦学习,常见的聚合有三类。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

数据聚合和联邦学习

数据仓库方法

常见的聚合有三类:文章来源地址https://www.toymoban.com/news/detail-467487.html

到了这里,关于数据聚合和联邦学习,常见的聚合有三类的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 联邦学习:对“数据隐私保护”和“数据孤岛”困境的破局

    作者:vivo 互联网安全团队- Tu Daxi 随着计算力、算法和数据量的巨大发展,人工智能迎来第3次发展高潮,开始了各行业的落地探索。然而,在“大数据”兴起的同时,更多行业应用领域中是“小数据”或者质量很差的数据。“数据孤岛”现象广泛存在,例如在信息安全领域的

    2024年02月11日
    浏览(41)
  • 《横向联邦学习中 PCA差分隐私数据发布算法》论文算法原理笔记

    论文地址:https://www.arocmag.com/article/01-2022-01-041.html 论文摘要      为了让不同组织在保护本地敏感数据和降维后发布数据隐私的前提下,联合使用 PCA进行降维和数据发布,提出 横向联邦 PCA差分隐私数据发布算法 。引入随机种子联合协商方案,在各站点之间以较少通信代

    2024年02月08日
    浏览(39)
  • 联邦学习:密码学 + 机器学习 + 分布式 实现隐私计算,破解医学界数据孤岛的长期难题

      这联邦学习呢,就是让不同的地方一起弄一个学习的模型,但重要的是,大家的数据都是自己家的,不用给别人。 这样一来,人家的秘密就不会到处乱跑(数据不出本地),又能合力干大事。   <没有联邦学习的情况> 在没有联邦学习的情况下,医院面临的一个主要问题

    2024年01月23日
    浏览(51)
  • 概念解析 | AutoFed:面向异构数据的联邦多模态自动驾驶的学习框架

    AutoFed:面向异构数据的联邦多模态自动驾驶的学习框架 注1:本文系“概念解析”系列之一,致力于简洁清晰地解释、辨析复杂而专业的概念。本次辨析的概念是:面向异构数据的联邦学习在自动驾驶中的应用。 参考文献:Zheng T, Li A, Chen Z, et al. AutoFed: Heterogeneity-Aware Federated Mult

    2024年02月14日
    浏览(79)
  • 联邦学习是什么?联邦学习简介

    在大多数情况下,数据分散的保存在各个企业手中,而各个企业希望在不公开自己数据的情况下,联合其他企业(利用各个企业所持有的数据)一起训练一个模型,该模型能够帮助企业获取更大的利益。 对于收集零散的数据,传统的方法是通过搭建一个数据中心,在数据中心

    2023年04月16日
    浏览(42)
  • 深入理解联邦学习——纵向联邦学习

    分类目录:《深入理解联邦学习》总目录 假设进行联邦学习的数据提供方为 A A A 和 B B B ,第三方为 C C C ,则纵向联邦学习步骤如下: 在系统级做加密样本对齐,在企业感知层面不会暴露非交叉用户 对齐样本进行模型加密训练: 由第三方 C C C 向 A A A 和 B B B 发送公钥,用来

    2024年02月09日
    浏览(45)
  • 【联邦学习(Federated Learning)】- 横向联邦学习与联邦平均FedAvg

    横向联邦学习也称为 按样本划分的联邦学习 ,可以应用于联邦学习的各个参与方的数据集有相同的特征空间和不同的样本空间的场景,类似于在表格视图中对数据进行水平划分的情况。 例如,两个地区的城市商业银行可能在各自的地区拥有非常不同的客户群体,所以他们的

    2023年04月19日
    浏览(45)
  • 深入理解联邦学习——联邦学习的分类

    分类目录:《深入理解联邦学习》总目录 在实际中,孤岛数据具有不同分布特点,根据这些特点,我们可以提出相对应的联邦学习方案。下面,我们将以孤岛数据的分布特点为依据对联邦学习进行分类。 考虑有多个数据拥有方,每个数据拥有方各自所持有的数据集 D i D_i D

    2024年02月09日
    浏览(43)
  • 微服务学习|elasticsearch:数据聚合、自动补全、数据同步

    聚合 (aggregations)可以实现对文档数据的统计、分析、运算。聚合常见的有三类: 桶(Bucket)聚合:用来对文档做分组 TermAggregation:按照文档字段值分组 Date Histogram:按照日期阶梯分组,例如一周为一组,或者一月为一组 度量(Metric)聚合:用以计算一些值,比如: 最大值、最小值、平均

    2024年02月04日
    浏览(59)
  • 【阅读笔记】联邦学习实战——联邦学习视觉案例

    FATE是微众银行开发的联邦学习平台,是全球首个工业级的联邦学习开源框架,在github上拥有近4000stars,可谓是相当有名气的,该平台为联邦学习提供了完整的生态和社区支持,为联邦学习初学者提供了很好的环境,否则利用python从零开发,那将会是一件非常痛苦的事情。本篇

    2023年04月08日
    浏览(44)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包