opencv笔记:高斯滤波和中值滤波对椒盐噪声的处理

这篇具有很好参考价值的文章主要介绍了opencv笔记:高斯滤波和中值滤波对椒盐噪声的处理。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

 

目录

1. 椒盐噪声简介

2. 高斯滤波的原理和实现

 2.1. 高斯滤波的原理

   2.2. 高斯滤波的API 

3. 中值滤波的原理和实现

  3.1. 中值滤波的原理

  3.2. 中值滤波的API

4. 高斯滤波和中值滤波对椒盐噪声的处理结果


数字图像处理中,噪声会导致图像质量下降和信息的丢失,因此需要采用图像降噪滤波算法来减少噪声对图像的影响。其中,椒盐噪声是一种经常出现的噪声类型,因为它可以是由传输过程中的信号干扰或者传感器故障引起的。高斯滤波和中值滤波是两种常见的图像滤波算法,它们都可以有效地处理椒盐噪声。本文将介绍高斯滤波和中值滤波算法的实现原理,比较它们对椒盐噪声的处理效果,并综合两种方法的优点和缺点得出一个结论,以期为图像处理的实践提供一些有益的参考。

1. 椒盐噪声简介

椒盐噪声又叫冲击噪声(或者脉冲噪声)。在图像上表现为离散分布的纯白色或者黑色像素点,出现的位置通常是随机的,不连续的。由于在正常情况下,在图像中不太可能出现最大/最小值的灰度像素,因此这个样的像素点可以被当成噪声。

椒盐噪声产生的原因可能是环境的干扰(如电磁干扰)、传感器(ADC)内部时序错误等。

2. 高斯滤波的原理和实现

 2.1. 高斯滤波的原理

高斯滤波是一种常见的滤波方式,其内核形式是

opencv笔记:高斯滤波和中值滤波对椒盐噪声的处理

opencv笔记:高斯滤波和中值滤波对椒盐噪声的处理

 其中是图像中的点的坐标,是标准差,高斯掩膜就是利用这个函数计算的。x和y都是代表以核中心点为坐标原点的坐标值。这里介绍一下的作用,当较小的时候,生成的高斯掩膜中心的系数比较大,而周围的系数比较小,这样对图像的平滑效果不明显。而当较大的时候,生成的掩膜的各个系数相差不大,比较类似于均值掩膜,对图像的平滑效果比较明显。

高斯滤波主要作用是消除高斯噪声,即符合正态分布的噪声。

    2.2. 高斯滤波的API 

dst=cv2.GaussianBlur(src, ksize, sigmaX, sigmaY, borderType)

         ● dst是返回值,表示进行高斯滤波后得到的处理结果。

         ● src 是需要处理的图像,即源图像。它能够有任意数量的通道,并能对各个通道独立处理。图像深度应该是CV_8U、CV_16U、CV_16S、CV_32F 或者 CV_64F中的一种。

        ● ksize 是高斯滤波内核的大小。ksize.width和ksize.height可以不同,但​​它们都必须为正数和奇数,也可以为零,然后根据sigmaX和sigmaY计算得出。

        ●sigmaX X方向上的高斯核标准偏差。

        ●sigmaY Y方向上的高斯核标准差。

如果sigmaY为零,则将其设置为等于sigmaX;如果两个sigmas为零,则分别从ksize.width和ksize.height计算得出;为了完全控制结果,而不管将来可能对所有这些语义进行的修改,建议指定所有ksize,sigmaX和sigmaY。

3. 中值滤波的原理和实现

  3.1. 中值滤波的原理

中值滤波器是一种常用的非线性滤波器,其基本原理是选择待处理像素的一个邻域中各像素值的中值来代替待处理的像素,其主要功能是让像素的灰度值与周围像素相近,从而消除孤立的噪声点。

中值滤波器在消除噪声的同时,还能有效保护图像的边界信息,不会对图像造成很大的模糊(相对于均值滤波)。

中值滤波器的效果受滤波窗口的尺寸影响较大,在消除噪声和保护图像细节之间存在着矛盾:滤波窗口较小,则能很好的保护图像中的细节,但对噪声的过滤效果不是很好;反之,窗口尺寸较大有较好的噪声过滤效果,但是会对图像造成一定的模糊(此时就需要用到自适应中值滤波器)。另外根据中值滤波器原理,如果在滤波窗口内的噪声点的个数大于整个窗口内像素的个数,则中值滤波不能很好的过滤掉噪声。 

  3.2. 中值滤波的API

dst=cv2.medianBlur(src,ksize)

        ● dst是返回值,表示进行中值滤波后得到的处理结果。

         ● src 是需要处理的图像,即源图像。它能够有任意数量的通道,并能对各个通道独立处理。图像深度应该是CV_8U、CV_16U、CV_16S、CV_32F 或者 CV_64F中的一种。

        ● ksize 是滤波核的大小。滤波核大小是指在滤波处理过程中其邻域图像的高度和宽度。需要注意,核大小必须是比1大的奇数,比如3、5、7等。

4. 高斯滤波和中值滤波对椒盐噪声的处理结果

# image filtering
import cv2 as cv
import matplotlib.pyplot as plt
import numpy as np

# 直接读取图像(灰度图像、彩色)
img1 = cv.imread("E:\\loaddown\\opencv_test\\1.jpg")
noisy_img = np.copy(img1) #加噪声的图像
# 给图像加入椒盐噪声
s_vs_p = 0.5 #设置椒盐噪声的数目比例
amount = 0.04 #设置添加噪声图像像素的数目

#添加salt噪声
num_salt = np.ceil(amount * img1.size * s_vs_p)
coords = [np.random.randint(0, i-1, int(num_salt)) for i in img1.shape] #设置salt噪声的坐标位置
noisy_img[coords[0], coords[1], :] = [255,255,255]

#添加pepper噪声
num_pepper = np.ceil(amount * img1.size * (1 - s_vs_p))
coords = [np.random.randint(0, i-1, int(num_pepper)) for i in img1.shape]
noisy_img[coords[0], coords[1], :] = [0,0,0]

# 两种滤波:高斯滤波
gaussianBlur_img_0 = cv.GaussianBlur(noisy_img, (5,5), 0)
gaussianBlur_img_3 = cv.GaussianBlur(noisy_img, (5,5), 3)
#中值滤波
medianBlur_img_3 = cv.medianBlur(noisy_img,3)
medianBlur_img_5 = cv.medianBlur(noisy_img,5)
# 显示图像

fig,axes = plt.subplots(nrows=1, ncols=2, figsize=(16,12), dpi=400)
axes[0].imshow(img1[:,:,::-1])
axes[0].set_title("orignal")
axes[1].imshow(noisy_img[:,:,::-1])
axes[1].set_title("noisy_img")
plt.show()
fig,axes = plt.subplots(nrows=1, ncols=2, figsize=(16,12), dpi=400)
axes[0].imshow(gaussianBlur_img_0[:,:,::-1])
axes[0].set_title("gaussianBlur_img_0")
axes[1].imshow(gaussianBlur_img_3[:,:,::-1])
axes[1].set_title("gaussianBlur_img_3")
plt.show()
fig,axes = plt.subplots(nrows=1, ncols=2, figsize=(16,12), dpi=400)
axes[0].imshow(medianBlur_img_3[:,:,::-1])
axes[0].set_title("medianBlur_img_3")
axes[1].imshow(medianBlur_img_5[:,:,::-1])
axes[1].set_title("medianBlur_img_5")
plt.show()

输出结果为:

opencv笔记:高斯滤波和中值滤波对椒盐噪声的处理

opencv笔记:高斯滤波和中值滤波对椒盐噪声的处理

opencv笔记:高斯滤波和中值滤波对椒盐噪声的处理 

  可以看出:总体来说中值滤波对椒盐噪声的消除效果比高斯滤波好。单看高斯滤波,越大,图像平滑越明显。单看中值滤波,增大窗口尺寸也会增加图像平滑的效果。文章来源地址https://www.toymoban.com/news/detail-467757.html

到了这里,关于opencv笔记:高斯滤波和中值滤波对椒盐噪声的处理的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Opencv-C++笔记 (13) : opencv-图像卷积一(均值、中值、高斯、双边滤波)与 边缘处理

    头文件 quick_opencv.h:声明类与公共函数 主函数调用 src:输入图像 。 dst:输出图像 。 ksize:内核大小 ,一般用 Size(w,h),w 为宽度,h 为深度。 anchor:被平滑的点,表示取 内核中心 ,默认值 Point(-1,-1)。 boderType:推断图像外部像素的某种边界模式。默认值 BORDER_DEFAULT 目的:

    2024年02月16日
    浏览(153)
  • OpenCV13-图像噪声:椒盐噪声和高斯噪声

    图像噪声是指图像中的随机或非随机的不希望的视觉扰动。它可以出现在数字图像中的各种形式,例如颗粒状噪声、条纹、斑点、模糊、失真等。图像噪声可能是由于图像采集过程中的传感器噪声、电磁干扰、传输错误、压缩算法等原因引起的。 常见的图像噪声类型包括:

    2024年02月07日
    浏览(51)
  • OpenCV(二十一):椒盐噪声和高斯噪声的产生

    目录 1.图像噪声介绍 2.椒盐噪声的产生 3.高斯噪声的产生 1.图像噪声介绍 噪声介绍      图像噪声是指在图像中存在的不期望的、随机的像素值变化,这些变化来源于多种因素。噪声可能导致图像细节模糊、失真或难以分辨。 以下是几种常见的图像噪声类型:       1.椒盐

    2024年02月09日
    浏览(37)
  • 图像处理:随机添加椒盐噪声和高斯噪声Python

    目录 图像处理:随机添加椒盐噪声和高斯噪声Python 1.常见的图像噪声 (1)高斯噪声 (2) 椒盐噪声 2.生成图像噪声 (1)高斯噪声 (2) 椒盐噪声(速度慢) (3) 椒盐噪声(快速版) 3. Demo测试         图像噪声是指存在于图像数据中的不必要的或多余的干扰信息。在噪

    2024年02月02日
    浏览(45)
  • python --opencv图像处理滤波详解(均值滤波、2D 图像卷积、方框滤波、 高斯滤波、中值滤波、双边滤波)

    第一件事情还是先做名词解释,图像平滑到底是个啥? 从字面意思理解貌似图像平滑好像是在说图像滑动。 emmmmmmmmmmmmmmm。。。。 其实半毛钱关系也没有,图像平滑技术通常也被成为图像滤波技术(这个名字看到可能大家会有点感觉)。 每一幅图像都包含某种程度的噪声,

    2024年02月04日
    浏览(64)
  • python使用opencv对图像添加(高斯/椒盐/泊松/斑点)噪声

    导读 这篇文章主要介绍如何利用opencv来对图像添加各类噪声,原图 高斯噪声 高斯噪声就是给图片添加一个服从 高斯分布的噪声 ,可以通过调节高斯分布 标准差(sigma) 的大小来控制添加噪声程度, sigma 越大添加的噪声越多图片损坏的越厉害 椒盐噪声 椒盐噪声就是给图片添

    2024年02月15日
    浏览(59)
  • 01:高斯噪声和椒盐噪声

    记录一下手写椒盐噪声和高斯噪声的python程序。 效果图如下: 椒盐噪声和高斯噪声都是数字图像处理中常见的噪声类型。 1.椒盐噪声是 随机的黑色和白色像素点 混杂在图像中,使得图像中的一些像素点变得十分明显且不规则。椒盐噪声可能由于传感器损坏、传输错误、压缩

    2024年02月05日
    浏览(46)
  • python实现对图片进行均值滤波、中值滤波、高斯滤波处理及其原理和特点

    1.高斯滤波         1)原理:对图像邻域内像素进行平滑时,邻域内不同位置的像素被赋予不同的权值。         2)特点:对图像进行平滑的同时,同时能够更多的保留图像的总体灰度分布特征。         3)代码         4)效果图(左原图)  2.均值滤波         1)

    2024年02月06日
    浏览(44)
  • 图像处理:推导五种滤波算法(均值、中值、高斯、双边、引导)

    目录 概论 算法原理 1、均值滤波 2、中值滤波 3、高斯滤波 4、双边滤波 5、引导滤波  手写代码 Opencv代码实现  最后的总结 参考文章         本来打算是分开推导的,但我觉得还是整个合集吧,避免有水文的嫌疑,那么因为学习的需要,会涉及到图像的滤波处理,我汇总

    2024年02月07日
    浏览(48)
  • 【OpenCV-Python】:基于均值、中值、方框、双边和高斯滤波的图像去噪

    ✨博客主页:王乐予🎈 ✨年轻人要:Living for the moment(活在当下)!💪 🏆推荐专栏:【图像处理】【千锤百炼Python】【深度学习】【排序算法】 本节将对经过噪声污染的图像进行去噪,去噪方法包含 均值滤波、中值滤波、方框滤波、双边滤波和高斯滤波 。 实验所用的图

    2024年02月05日
    浏览(65)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包