数学建模 —— 评价模型

这篇具有很好参考价值的文章主要介绍了数学建模 —— 评价模型。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。


前言

对于评价类模型,最好还是使用 Topsis法,主成分分析主观因素太大,灰色关联分析因为这个灰色理论近几年才在国内出现,使用范围较小,可能评委老师了解不多。模糊综合评价的话也可以使用,但是能用 Topsis法最好还用 Topsis法。
评价类模型主要研究的是多个指标中各个指标的评分来对不同指标进行评价。


一、层次分析法(AHP)

1.介绍

层次分析法是一种解决多目标的复杂问题的定性与定量相结合的决策分析方法。该方法将定量分析与定性分析结合起来,用决策者的经验判断各衡量目标之间能否实现的标准之间的相对重要程度,并合理地给出每个决策方案的每个标准的权数,利用权数求出各方案的优劣次序,比较有效地应用于那些难以用定量方法解决的课题。
层次分析法的基本思路是将所要分析的问题层次化;根据问题的性质和所要达成的总目标,将问题分解为不同的组成因素,并按照这些因素的关联影响及其隶属关系,将因素按不同层次凝聚组合,形成一个多层次分析结构模型;最后,对问题进行优劣比较并排列。

2.算法流程

数学建模 —— 评价模型

  1. 分析系统中各因素之间的关系,建立系统的递阶层次结构
    数学建模 —— 评价模型
  2. 对于同一层次的各元素关于上一层次中某一准则的重要性进行两两比较,构造两两比较矩阵(判断矩阵)数学建模 —— 评价模型
  3. 由判断矩阵计算被比较元素对于该准则的相对权重,并进行一致性检验(检验通过权重才能用).
    数学建模 —— 评价模型
    数学建模 —— 评价模型
  4. 根据权重矩阵计算得分,并进行排序数学建模 —— 评价模型

3.局限性

数学建模 —— 评价模型


二、优劣解距离法(Topsis法)

1.介绍

TOPSIS 法是一种常用的综合评价方法,其能充分利用原始数据的信息,其结果能精确地反映各评价方案之间的差距。基本过程为先将原始数据矩阵统一指标类型(一般正向化处理)得到正向化的矩阵,再对正向化的矩阵进行标准化处理以消除各指标量纲的影响,并找到有限方案中的最优方案和最劣方案,然后分别计算各评价对象与最优方案和最劣方案间的距离,获得各评价对象与最优方案的相对接近程度,以此作为评价优劣的依据。该方法对数据分布及样本含量没有严格限制,数据计算简单易行。

2.算法流程

数学建模 —— 评价模型

  1. 将原始矩阵正向化
    数学建模 —— 评价模型
  2. 正向化矩阵标准化
    注:标准化的目的是消除不同指标量纲的影响。
  3. 计算得分并归一化

3.模型拓展 —— 带权重的Topsis

1.使用层次分析法来确定权重取值

数学建模 —— 评价模型

2.基于熵权法对Topsis模型的修正

数学建模 —— 评价模型

熵权法的计算步骤
  1. 判断输入的矩阵中是否存在负数,如果有则要重新标准化到非负区间
    (后面计算概率时需要保证每一个元素为非负数)数学建模 —— 评价模型
  2. 计算第 j 项指标下第 i 个样本所占的比重,并将其看作相对熵计算中用到的概率
    数学建模 —— 评价模型
  3. 计算每个指标的信息熵,并计算信息效用值,并归一化得到每个指标的熵权
    数学建模 —— 评价模型

三、灰色关联分析

1.介绍

数学建模 —— 评价模型

2.算法流程

  1. 画统计图
  2. 确定分析数列
    数学建模 —— 评价模型
  3. 对变量进行预处理(两个目的:去量纲;缩小变量范围简化计算)
    对母序列和子序列中的每个指标进行预处理:先求出每个指标的均值,再用改指标中的每个元素都除以其均值。
  4. 计算子序列中每个指标与母序列的关联系数

数学建模 —— 评价模型

  1. 通过比较三个⼦序列和⺟序列的关联度可以得到结论

spassau中的算法步骤:
第一步:确定母序列和特征序列,且准备好数据格式;
第二步:针对数据进行无量纲化处理(通常情况下需要);
第三步:求解母序列和特征序列之间的灰色关联系数值;
第四步:求解关联度值;
第五步:对关联度值进行排序,得出结论。

3.注意事项

数学建模 —— 评价模型


四、模糊综合评价模型

阅读:模糊综合评价模型详解

1.算法流程

第一步:确定评价指标和评语集;

第二步:确定权重向量矩阵A和构造权重判断矩阵R;

第三步:计算权重并进行决策评价。

2.应用实例

数学建模 —— 评价模型


总结

补充阅读:
指标赋权与评价类方法总结
数模算法:模糊综合评价模型文章来源地址https://www.toymoban.com/news/detail-468758.html

到了这里,关于数学建模 —— 评价模型的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 数学建模学习(4):TOPSIS 综合评价模型及编程实战

            需求:我们需要对各个银行进行评价,A-G为银行的各个指标,下面是银行的数据: 清空代码和变量的指令 层次分析法 每一行代表一个对象的指标评分 A为自己构造的输入判别矩阵 求特征值特征向量,找到最大特征值对应的特征向量  找到最大的特征值  找到最大

    2024年02月16日
    浏览(54)
  • 数学建模:评价性模型学习——灰色关联分析法(GRA模型)

    目录 前言 一、灰色关联分析 1.什么是灰色关联分析? 2.流程介绍 二、综合评价 1.数据无量纲化处理 2.确定参考序列 3.确定权重 4.计算灰色关联系数  5.计算灰色加权关联度 6.代码 总结          继续学习数学建模涉及的评价性模型,这篇会介绍如何使用灰色关联分析法进

    2024年02月04日
    浏览(181)
  • 【数学建模学习】matlab实现评价模型——层次分析法(AHP)

    目录 1概述  2算法实现流程 3实例  4matlab实现层次分析法 5计算结果 层次分析法,简称AHP,是评价模型中的一种算法,指将与决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。层次分析法的缺陷在于判断矩阵是主观决定的,

    2024年02月04日
    浏览(56)
  • 全国大学生数字建模竞赛、中国研究生数学建模竞赛(数学建模与计算实验)前言

    1.什么是数学建模 2.所需要学的知识,知识算法分类表格汇总 3.所需要的软件工具 4.论文模板,查找文献,查找数据   全国大学生数字建模竞赛(National College Student Mathematical Modeling Contest)是中国的一项全国性大学生竞赛活动,旨在 提高大学生的数学建模能力和创新思维,

    2024年02月15日
    浏览(62)
  • 2015年亚太杯APMCM数学建模大赛B题城市公共交通服务水平动态评价模型求解全过程文档及程序

    原题再现    城市公共交通服务评价是城市公共交通系统建设和提高公共交通运营效率的重要组成部分。对于公交企业,管理和规划部门,传统公交车站、线路和换乘枢纽的规划数据只是基于主管部门收集的统计数据和人工盘点。    在自动采集技术日益发展的今天,如果

    2024年02月07日
    浏览(58)
  • 【数学建模】历年数学建模国赛评价类题目汇总

    年份 题目 模型/算法/解题方法 1993B题:足球甲级联赛排名问题 评价与决策 2005A题:长江水质的评价与预测问题 综合评价和预测问题(非常典型和传统的问题) 2005C题:雨量预报方法的评价问题 综合评价问题 2006B题:艾滋病疗法的评价及预测问题 评价和预测(分类、拟合、线性

    2024年02月07日
    浏览(55)
  • 数学建模--综合评价方法

    提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加 例如:第一章 Python 机器学习入门之pandas的使用 提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档 评价方法大体上可分为两类,其主要区别在确定权重的方法上。一类是主观赋权

    2024年02月10日
    浏览(45)
  • 【数学建模】-- 模糊综合评价

    模糊综合评价(Fuzzy Comprehensive Evaluation)是一种用于处理不确定性和模糊性信息的决策分析方法。它通常用于解决复杂的多指标决策问题,其中各指标之间可能存在交叉影响和模糊性的情况。模糊综合评价通过将不确定性和模糊性量化,将多个指标的信息综合起来,得出一个

    2024年02月10日
    浏览(57)
  • 数学建模【模糊综合评价分析】

    一、模糊综合评价分析简介 提到模糊综合评价分析,就先得知道模糊数学。1965年美国控制论学家L.A.Zadeh发表的论文“Fuzzy sets”标志着模糊数学的诞生。 模糊数学又称Fuzzy数学,是研究和处理模糊性现象的一种数学理论和方法。模糊性数学发展的主流是在它的应用方面。由于

    2024年03月20日
    浏览(57)
  • 数学建模:模糊综合评价分析

    🔆 文章首发于我的个人博客:欢迎大佬们来逛逛 构成综合评价类问题的五个要素: 被评价对象 评价指标 权重系数 综合评价模型 评价者 综合评价的一般步骤: 确定综合评价的目的(分类?排序?实现程度) 建立评价指标体系 对指标数据进行 预处理 :一致化和无量纲化

    2024年02月09日
    浏览(62)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包