支持向量机(sklearn.svm.svc)中的参数

这篇具有很好参考价值的文章主要介绍了支持向量机(sklearn.svm.svc)中的参数。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

sklearn.svm.svc( C=1.0, kernel='rbf', degree=3, gamma='scale', coef0=0.0, shrinking=True, probability=False, tol=0.001, 
cache_size=200, class_weight=None, verbose=False, max_iter=- 1, decision_function_shape='ovr', 
break_ties=False, random_state=None)

参数说明:

1.C: 正则化系数,float类型,默认值为1.0。

2.kernel:核函数,{‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’, ‘precomputed’},默认值为’rbf’。

 (1)linear: 线性核函数; 优点: 简单、运算效率高;缺点: 对线性不可分的数据集没有很好的效果
(2) ploy: 多项式核函数; 优点: 可以拟合出复杂的分割超平面;缺点: 有三个参数,调参困难,且当n过大时,模型拟合时间会很长 ;
(3) rbf: 径向基函数 通常定义为样本到数据中心之间径向距离(通常是欧氏距离)的单调函数(由于距离是径向同性的); 相较于多项式核,具有参数少的优点
(4) sigmoid:Logistic函数 也称为S型生长曲线,优点:平滑
(5) precomputed:预训练好的核函数对应的Gram 矩阵 优点: 不用再次拟合核函数对应的Gram 矩阵,直接进行映射。

3.degree:多项式核函数的维度,int类型,默认值为3。只有在使用多项式核函数的时候才有用。

4.gamma:‘rbf’, ‘poly’ 和‘sigmoid’ 核函数的系数, {‘auto’, ‘scale’},默认值为‘scale’。

5.coef0:常数项, float类型,默认值为0。只作用于poly 和 sigmoid 核函数。

6.shrinking:启用启发式收缩,bool类型,默认为True。当迭代次数过大时, 启用启发式收缩可以缩短训练时间,如果对停止迭代容忍度较高时(tol参数来反映),不用启发式收缩可能会更快一些。

7.probability:启用概率估计, bool类型,默认为False。在拟合(fit)模型之前启用,启用之后会减缓拟合速度,但是拟合之后,模型能够输出各个类别对应的概率。

8.tol:停止拟合容忍度,float类型,默认值为1e-3 即为0.001。定义模型停止拟合的误差值。

9.cache_size:核缓存大小,float类型,默认值为200(MB)。数据集维度高,数量大,当所需内存超出了,可以通过调整cache_size 的大小来加快模型拟合。

10.class_weight:类别的权重, {dict} or ‘balanced’,默认值为None。

11.verbose:启用详细输出, bool类型,默认值:False。

12.max_iter:最大迭代次数,int类型,默认值: -1,不限制迭代次数。

13.decision_function_shape:多分类策略,字典类型 ,默认值: ‘ovr’。进行二分类任务时,这一参数被自动忽略。

14.break_ties:启用打破平局, bool类型,默认值为False。

15.random_state:随机数,int类型,默认值:None。控制伪随机数生成,保证多次训练时,打乱的数据是一致的。文章来源地址https://www.toymoban.com/news/detail-469277.html

到了这里,关于支持向量机(sklearn.svm.svc)中的参数的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 支持向量机SVM原理

    目录 支持向量机SVM原理 SVM原理 从线性分类器说起 SVM的目标是最大化分类间隔 转化为对偶问题求解                     【数之道】支持向量机SVM是什么,八分钟直觉理解其本质_哔哩哔哩_bilibili      SVM是由Vapnik等人于1995年提出的,在之后的20多年里它都是最具影响力的机

    2024年02月11日
    浏览(42)
  • 机器学习-支持向量机SVM

    在本练习中,我们将使用支持向量机(SVM)来构建垃圾邮件分类器。 我们将从一些简单的2D数据集开始使用SVM来查看它们的工作原理。 然后,我们将对一组原始电子邮件进行一些预处理工作,并使用SVM在处理的电子邮件上构建分类器,以确定它们是否为垃圾邮件。 我们要做

    2024年02月12日
    浏览(55)
  • 机器学习——支持向量机SVM

    支持向量机(SVM)是一种二类分类模型,其基本模型是在特征空间上找到最佳的分离超平面使得训练集上正负样本间隔最大,间隔最大使它有别于感知机,支持向量机也可通过核技巧使它成为非线性分类器。支持向量机的学习策略是间隔最大化,可将其转化为一个求解凸二次

    2024年01月17日
    浏览(57)
  • SVM(支持向量机)-机器学习

    支持向量机(Support Vector Machine,SVM) 是一种用于分类和回归分析的监督学习算法 。它属于机器学习中的一类强大而灵活的模型,广泛应用于模式识别、图像分类、自然语言处理等领域。 基本原理: SVM的基本原理是通过找到能够有效分隔不同类别的超平面来进行分类。在二维

    2024年02月03日
    浏览(52)
  • MATLAB 支持向量机(SVM)

    简单来讲就是如何将两个数据用点、直线、平面分开。。。。。 二维空间中,要分开两个线性可分的点集合,我们需要找到一条分类直线即可, 通俗来讲,在这个二维平面中,可以把两类点的分开的直线有很多条,那么这些直线中,哪一条才是最好的呢?也就是如何选择出

    2024年02月03日
    浏览(37)
  • 一文全解经典机器学习算法之支持向量机SVM(关键词:SVM,对偶、间隔、支持向量、核函数、特征空间、分类)

    之前所介绍的逻辑回归是基于似然度的分类方法,通过对数据概率进行建模来得到软输出。但这种分类方法其实稍加“繁琐”,因为要 估计数据的概率分布作为中间步骤 。这就像当一个人学习英语时,他只要直接报个班或者自己看书就行了,而不需要先学习诘屈聱牙的拉丁

    2024年02月03日
    浏览(63)
  • 机器学习算法:支持向量机(SVM)

    Solem《python计算机视觉编程》、李航《统计学习方法》、周志华《机器学习》 要理解好支持向量机需要较好的数学功底,且能不被公式以及文字绕晕,这里我们就理清楚支持向量机的大体过程。具体的数学计算推导其实已经封装好了,那么理解算法的原理也对我们将来的学习

    2024年02月03日
    浏览(51)
  • 【机器学习】SVM支持向量机模型

     本站原创文章,转载请说明来自 《老饼讲解-机器学习》 ml.bbbdata.com 目录 一. SVM的目标和思想    1.1 SVM硬间隔模型的原始目的 1.2 SVM的直接目标 1.3 什么是支持向量  二. SVM的支持平面的表示方式 2.1 支持面表示方式的初步思路 2.2 初步思路的缺陷与改进 2.3 支持面的最终表示

    2023年04月23日
    浏览(205)
  • 机器学习(六)支持向量机(SVM)

    目录 1.间隔与支持向量 1.1线性可分 1.2支持向量 1.3 最大间隔超平面 2.对偶问题 2.1拉格朗日乘子法 2.2 SMO算法 2.3SMO算法代码实现 3.核函数 4. SVM实例(手写体数字识别) 5.实验总结 支持向量机(SVM) 是有监督学习中最有影响力的机器学习算法之一,一般用于解决二分类问题(

    2024年02月09日
    浏览(57)
  • 【机器学习】支持向量机SVM入门

    相较于之前学习的线性回归和神经网络,支持向量机(Supprot Vector Machine,简称SVM)在拟合复杂的非线性方程的时候拥有更出色的能力,该算法也是十分经典的算法之一。接下来我们需要学习这种算法 首先我们回顾逻辑回归中的经典假设函数,如下图: 对于任意一个实例 (

    2024年02月15日
    浏览(57)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包