Kafka性能优化

这篇具有很好参考价值的文章主要介绍了Kafka性能优化。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

Kafka可视化管理工具kafka-manager

线上环境规划

JVM参数设置 

线上问题及优化

如果消息丢失

消息重复消费

消息乱序

消息积压

延时队列

消息回溯

分区数越多吞吐量越高吗

消息传递保障 

kafka的事务

kafka高性能的原因

数据传输零拷贝原理:


Kafka可视化管理工具kafka-manager

Kafka性能优化安装及基本使用可参考 :https://www.cnblogs.com/dadonggg/p/8205302.html

有多种kafka可视化工具

线上环境规划

Kafka性能优化

JVM参数设置 

kafka是scala语言开发,运行在JVM上,需要对JVM参数合理设置,参看JVM调优专题

修改bin/kafka-start-server.sh中的jvm设置,假设机器是32G内存,可以如下设置:

export KAFKA_HEAP_OPTS="-Xmx16G -Xms16G -Xmn10G -XX:MetaspaceSize=256M -XX:+UseG1GC -XX:MaxGCPauseMillis=50 -XX:G1HeapRegionSize=16M"

这种大内存的情况一般都要用G1垃圾收集器,因为年轻代内存比较大,用G1可以设置GC最大停顿时间,不至于一次minor gc就花费太长时间,当然,因为像kafka,rocketmq,es这些中间件,写数据到磁盘会用到操作系统的page cache,所以JVM内存不宜分配过大,需要给操作系统的缓存留出几个G。

线上问题及优化

如果消息丢失

就分为下面这两种情况

消息发送端:

(1)acks=0: 表示producer不需要等待任何broker确认收到消息的回复,就可以继续发送下一条消息。性能最高,但是最容易丢消息。大数据统计报表场景,对性能要求很高,对数据丢失不敏感的情况可以用这种。

(2)acks=1: 至少要等待leader已经成功将数据写入本地log,但是不需要等待所有follower是否成功写入。就可以继续发送下一条消息。这种情况下,如果follower没有成功备份数据,而此时leader又挂掉,则消息会丢失。

(3)acks=-1或all: 这意味着leader需要等待所有备份(min.insync.replicas配置的备份个数)都成功写入日志,这种策略会保证只要有一个备份存活就不会丢失数据。这是最强的数据保证。一般除非是金融级别,或跟钱打交道的场景才会使用这种配置。当然如果min.insync.replicas配置的是1则也可能丢消息,跟acks=1情况类似。

消息消费端:

如果消费这边配置的是自动提交,万一消费到数据还没处理完,就自动提交offset了,但是此时你consumer直接宕机了,未处理完的数据丢失了,下次也消费不到了。

消息重复消费

消息发送端:

发送消息如果配置了重试机制,比如网络抖动时间过长导致发送端发送超时,实际broker可能已经接收到消息,但发送方会重新发送消息

消息消费端:

如果消费这边配置的是自动提交,刚拉取了一批数据处理了一部分,但还没来得及提交,服务挂了,下次重启又会拉取相同的一批数据重复处理

一般消费端都是要做消费幂等处理的。

消息乱序

如果发送端配置了重试机制,kafka不会等之前那条消息完全发送成功才去发送下一条消息,这样可能会出现,发送了1,2,3条消息,第一条超时了,后面两条发送成功,再重试发送第1条消息,这时消息在broker端的顺序就是2,3,1了

所以,是否一定要配置重试要根据业务情况而定。也可以用同步发送的模式去发消息,当然acks不能设置为0,这样也能保证消息发送的有序。

kafka保证全链路消息顺序消费,需要从发送端开始,将所有有序消息发送到同一个分区,然后用一个消费者去消费,但是这种性能比较低,可以在消费者端接收到消息后将需要保证顺序消费的几条消费发到内存队列(可以搞多个),一个内存队列开启一个线程顺序处理消息。

消息积压

1)线上有时因为发送方发送消息速度过快,或者消费方处理消息过慢,可能会导致broker积压大量未消费消息。

此种情况如果积压了上百万未消费消息需要紧急处理,可以修改消费端程序,让其将收到的消息快速转发到其他topic(可以设置很多分区),然后再启动多个消费者同时消费新主题的不同分区。

2)由于消息数据格式变动或消费者程序有bug,导致消费者一直消费不成功,也可能导致broker积压大量未消费消息。

此种情况可以将这些消费不成功的消息转发到其它队列里去(类似死信队列),后面再慢慢分析死信队列里的消息处理问题。

延时队列

延时队列存储的对象是延时消息。所谓的“延时消息”是指消息被发送以后,并不想让消费者立刻获取,而是等待特定的时间后,消费者才能获取这个消息进行消费,延时队列的使用场景有很多, 比如 :

1)在订单系统中, 一个用户下单之后通常有 30 分钟的时间进行支付,如果 30 分钟之内没有支付成功,那么这个订单将进行异常处理,这时就可以使用延时队列来处理这些订单了。

2)订单完成1小时后通知用户进行评价。

实现思路:发送延时消息时先把消息按照不同的延迟时间段发送到指定的队列中(topic_1s,topic_5s,topic_10s,...topic_2h,这个一般不能支持任意时间段的延时),然后通过定时器进行轮训消费这些topic,查看消息是否到期,如果到期就把这个消息发送到具体业务处理的topic中,队列中消息越靠前的到期时间越早,具体来说就是定时器在一次消费过程中,对消息的发送时间做判断,看下是否延迟到对应时间了,如果到了就转发,如果还没到这一次定时任务就可以提前结束了。

消息回溯

如果某段时间对已消费消息计算的结果觉得有问题,可能是由于程序bug导致的计算错误,当程序bug修复后,这时可能需要对之前已消费的消息重新消费,可以指定从多久之前的消息回溯消费,这种可以用consumer的offsetsForTimes、seek等方法指定从某个offset偏移的消息开始消费,参见上节课的内容。

分区数越多吞吐量越高吗

可以用kafka压测工具自己测试分区数不同,各种情况下的吞吐量

# 往test里发送一百万消息,每条设置1KB
# throughput 用来进行限流控制,当设定的值小于 0 时不限流,当设定的值大于 0 时,当发送的吞吐量大于该值时就会被阻塞一段时间
bin/kafka-producer-perf-test.sh --topic test --num-records 1000000 --record-size 1024 --throughput -1 --producer-props bootstrap.servers=192.168.65.60:9092 acks=1

Kafka性能优化

网络上很多资料都说分区数越多吞吐量越高 , 但从压测结果来看,分区数到达某个值吞吐量反而开始下降,实际上很多事情都会有一个临界值,当超过这个临界值之后,很多原本符合既定逻辑的走向又会变得不同。一般情况分区数跟集群机器数量相当就差不多了。

当然吞吐量的数值和走势还会和磁盘、文件系统、 I/O调度策略等因素相关。

注意:如果分区数设置过大,比如设置10000,可能会设置不成功,后台会报错"java.io.IOException : Too many open files"。

异常中最关键的信息是“ Too many open flies”,这是一种常见的 Linux 系统错误,通常意味着文件描述符不足,它一般发生在创建线程、创建 Socket、打开文件这些场景下 。 在 Linux系统的默认设置下,这个文件描述符的个数不是很多 ,通过 ulimit -n 命令可以查看:一般默认是1024,可以将该值增大,比如:ulimit -n 65535

消息传递保障 

  • at most once(消费者最多收到一次消息,0--1次):acks = 0 可以实现。
  • at least once(消费者至少收到一次消息,1--多次):ack = all 可以实现。
  • exactly once(消费者刚好收到一次消息):at least once 加上消费者幂等性可以实现,还可以用kafka生产者的幂等性来实现。

kafka生产者的幂等性:因为发送端重试导致的消息重复发送问题,kafka的幂等性可以保证重复发送的消息只接收一次,只需在生产者加上参数 props.put(“enable.idempotence”, true) 即可,默认是false不开启。

具体实现原理是,kafka每次发送消息会生成PID和Sequence Number,并将这两个属性一起发送给broker,broker会将PID和Sequence Number跟消息绑定一起存起来,下次如果生产者重发相同消息,broker会检查PID和Sequence Number,如果相同不会再接收。

PID:每个新的 Producer 在初始化的时候会被分配一个唯一的 PID,这个PID 对用户完全是透明的。生产者如果重启则会生成新的PID。

Sequence Number:对于每个 PID,该 Producer 发送到每个 Partition 的数据都有对应的序列号,这些序列号是从0开始单调递增的。

kafka的事务

Kafka的事务不同于Rocketmq,Rocketmq是保障本地事务(比如数据库)与mq消息发送的事务一致性,Kafka的事务主要是保障一次发送多条消息的事务一致性(要么同时成功要么同时失败),一般在kafka的流式计算场景用得多一点,比如,kafka需要对一个topic里的消息做不同的流式计算处理,处理完分别发到不同的topic里,这些topic分别被不同的下游系统消费(比如hbase,redis,es等),这种我们肯定希望系统发送到多个topic的数据保持事务一致性。Kafka要实现类似Rocketmq的分布式事务需要额外开发功能。

kafka的事务处理可以参考官方文档:

 Properties props = new Properties();
 props.put("bootstrap.servers", "localhost:9092");
 props.put("transactional.id", "my-transactional-id");
 Producer<String, String> producer = new KafkaProducer<>(props, new StringSerializer(), new StringSerializer());
 //初始化事务
 producer.initTransactions();

 try {
     //开启事务
     producer.beginTransaction();
     for (int i = 0; i < 100; i++){
         //发到不同的主题的不同分区
         producer.send(new ProducerRecord<>("hdfs-topic", Integer.toString(i), Integer.toString(i)));
         producer.send(new ProducerRecord<>("es-topic", Integer.toString(i), Integer.toString(i)));
         producer.send(new ProducerRecord<>("redis-topic", Integer.toString(i), Integer.toString(i)));
     }
     //提交事务
     producer.commitTransaction();
 } catch (ProducerFencedException | OutOfOrderSequenceException | AuthorizationException e) {
     // We can't recover from these exceptions, so our only option is to close the producer and exit.
     producer.close();
 } catch (KafkaException e) {
     // For all other exceptions, just abort the transaction and try again.
     //回滚事务
     producer.abortTransaction();
 }
 producer.close();

kafka高性能的原因

  • 磁盘顺序读写:kafka消息不能修改以及不会从文件中间删除保证了磁盘顺序读,kafka的消息写入文件都是追加在文件末尾,不会写入文件中的某个位置(随机写)保证了磁盘顺序写。
  • 数据传输的零拷贝
  • 读写数据的批量batch处理以及压缩传输

数据传输零拷贝原理:

Kafka性能优化

就是原来磁盘中的数据读取通过内核态和用户态的切换,然后读到内核空间的socket缓冲区中,然后再通过网卡接口被消费者消费

但是现在通过零拷贝可以直接在内核空间,通过网卡接口读取缓冲区中数据,被kafka消费者消费,这样直接就是少了两次内核和用户的切换,以及两次数据的拷贝,所以效率就高啊 文章来源地址https://www.toymoban.com/news/detail-469404.html

到了这里,关于Kafka性能优化的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Nginx 可视化管理工具与 cpolar 配置:实现远程访问本地服务的优化

    Nginx Proxy Manager 是一个开源的反向代理工具,不需要了解太多 Nginx 或 Letsencrypt 的相关知识,即可快速将你的服务暴露到外部环境,并且支持 SSL 配置。基于 Tabler 的美观且安全的管理界面,无需了解 Nginx 即可轻松创建转发域、重定向、流和 404 主机。 下面介绍在Linux 安装Nginx

    2024年02月08日
    浏览(49)
  • idea性能优化--内存设置及可视化

    英文 中文 效果 英文 中文 具体根据自己电脑性能设置 英文 中文

    2024年02月06日
    浏览(42)
  • 【docker 可视化管理工具-DockerUI】

    DockerUI 是一款开源的、强大的、轻量级的Docker管理工具。DockerUI覆盖了 docker cli 命令行 95% 以上的命令功能,通过可视化的界面,即使是不熟悉docker命令的用户也可以非常方便的进行Docker和Docker Swarm集群进行管理和维护。DockerUI后端使用Go语言开发,前台框架使用CubeUI。通过D

    2024年02月02日
    浏览(71)
  • 可视化Docker管理工具『Portainer』

    官方版本默认为英文,文章后方为中文版本安装。仅供参考。        使用web 管理界面来操作 docker,这样只需要鼠标点击就可以,有人肯定也用过 Portainer 这款工具,界面非常美观功能也非常全。 Portainer 是一个易用且轻量化的 Docker 管理介面,透过 Web 界面的操作,更方便对

    2024年02月13日
    浏览(66)
  • Docker可视化管理工具DockerUI

    什么是 DockerUI ? DockerUI 是一款开源的、强大的、轻量级的 Docker 管理工具。 DockerUI 覆盖了 docker cli 命令行 95% 以上的命令功能,通过可视化的 Web 界面操作,可以非常方便、轻松进行 docker 环境和 docker swarm 集群环境的管理和维护功能,方便不熟悉 docker 指令的用户更快地进入

    2024年04月14日
    浏览(81)
  • ElasticSearch可视化管理工具之ElasticHD

    推荐的五种客户端 1.Elasticsearch-Head , Elasticsearch-Head 插件在5.x版本之后已不再维护,界面比较老旧。 2.cerebro 据传该插件不支持ES中5.x以上版本。 3.kinaba 功能强大,但操作复杂,以后可以考虑。 4.Dejavu 也是一个 Elasticsearch 的 Web UI 工具,其 UI界面更符合当下主流的前端页面风

    2024年02月13日
    浏览(56)
  • 13 款炫酷的 MySQL 可视化管理工具

    MySQL 的管理维护工具非常多,除了系统自带的命令行管理工具之外,还有许多其他的图形化管理工具,工具好用是一方面,个人的使用习惯也很重要,这里介绍 13 款 MySQL 图形化管理工具,供大家参考。 DBeaver 是一个基于 Java 开发,免费开源的通用数据库管理和开发工具,使

    2024年02月04日
    浏览(59)
  • 【Docker】Docker可视化管理工具Portainer

    Docker可视化管理工具Portainer,好用! ●🧑个人主页:Damon7575 ●📃欢迎点赞👍关注💡收藏💖 ●📖既选择了远方,便只顾风雨兼程。 ●🤟欢迎大家有问题随时私信我! ●🧐版权:本文由[ Damon7575 ]原创,CSDN首发,侵权必究。 提示:以下是本篇文章正文内容,下面案例可供

    2024年02月10日
    浏览(65)
  • 三款好用的 Docker 可视化管理工具

    关注公众号:“DevOps实战派”,获取更多DevOps和运维的精彩内容。 Docker提供了命令行工具(Docker CLI)用来管理容器、镜像和网络等组件,但除此之外,我们也可以使用可视化管理工具来更加方便地进行管理。 本文,我将介绍3款免费且好用的 Docker 可视化管理工具。 Docker D

    2024年04月15日
    浏览(145)
  • FAST OS DOCKER 可视化Docker管理工具

    介绍 FAST OS DOCKER 界面直观、简洁,非常适合新手使用,方便大家轻松上手 docker部署运行各类有趣的容器应用,同时 FAST OS DOCKER 为防止服务器负载过高,进行了底层性能优化;其以服务器安全为基础,对其进行权限管理,因此安全性极高;为方便用户安装,集成了docker镜像,

    2024年02月01日
    浏览(78)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包