1.market1501数据集简介
Market-1501 数据集在清华大学校园中采集,夏天拍摄,在 2015 年构建并公开。它包括由6个摄像头(其中5个高清摄像头和1个低清摄像头)拍摄到的 1501 个行人、32668 个检测到的行人矩形框。每个行人至少由2个摄像头捕获到,并且在一个摄像头中可能具有多张图像。训练集有 751 人,包含 12,936 张图像,平均每个人有 17.2 张训练数据;测试集有 750 人,包含 19,732 张图像,平均每个人有 26.3 张测试数据。3368 张查询图像的行人检测矩形框是人工绘制的,而 gallery 中的行人检测矩形框则是使用DPM检测器检测得到的。该数据集提供的固定数量的训练集和测试集均可以在single-shot或multi-shot测试设置下使用。
1.1目录结构
1) “bounding_box_test”——用于测试集的 750 人,包含 19,732 张图像,前缀为 0000 表示在提取这 750 人的过程中DPM检测错的图(可能与query是同一个人),-1 表示检测出来其他人的图(不在这 750 人中)
2) “bounding_box_train”——用于训练集的 751 人,包含 12,936 张图像
3) “query”——为 750 人在每个摄像头中随机选择一张图像作为query,因此一个人的query最多有 6 个,共有 3,368 张图像
4) “gt_query”——matlab格式,用于判断一个query的哪些图片是好的匹配(同一个人不同摄像头的图像)和不好的匹配(同一个人同一个摄像头的图像或非同一个人的图像)
5) “gt_bbox”——手工标注的bounding box,用于判断DPM检测的bounding box是不是一个好的box
1.2命名规则
以 0001_c1s1_000151_01.jpg 为例
1) 0001 表示每个人的标签编号,从0001到1501;
2) c1 表示第一个摄像头(camera1),共有6个摄像头;
3) s1 表示第一个录像片段(sequece1),每个摄像机都有数个录像段;
4) 000151 表示 c1s1 的第000151帧图片,视频帧率25fps;
5) 01 表示 c1s1_001051 这一帧上的第1个检测框,由于采用DPM检测器,对于每一帧上的行人可能会框出好几个bbox。00 表示手工标注框
2.数据集划分
由于有1501个行人,因此需要划分成1501个文件夹,每个文件夹下放同一个人的图片,用前751个行人的文件夹做训练集,后750个行人的文件夹做测试集。
2.1划分数据的代码
import os
from PIL import Image
from shutil import copyfile, copytree, rmtree, move
PATH_DATASET = '/home/zqy/Desktop/yolov5-master/nxm_data/crops' # 需要处理的文件夹
PATH_NEW_DATASET = '/home/zqy/Desktop/yolov5-master/nxm_data/stitches' # 处理后的文件夹
PATH_ALL_IMAGES = PATH_NEW_DATASET + '/all_images'
PATH_TRAIN = PATH_NEW_DATASET + '/train'
PATH_TEST = PATH_NEW_DATASET + '/test'
# 定义创建目录函数
def mymkdir(path):
path = path.strip() # 去除首位空格
path = path.rstrip("\\") # 去除尾部 \ 符号
isExists = os.path.exists(path) # 判断路径是否存在
if not isExists:
os.makedirs(path) # 如果不存在则创建目录
print(path + ' 创建成功')
return True
else:
# 如果目录存在则不创建,并提示目录已存在
print(path + ' 目录已存在')
return False
class BatchRename():
'''
批量重命名文件夹中的图片文件
'''
def __init__(self):
self.path = PATH_DATASET # 表示需要命名处理的文件夹
# 修改图像尺寸
def resize(self):
for aroot, dirs, files in os.walk(self.path):
# aroot是self.path目录下的所有子目录(含self.path),dir是self.path下所有的文件夹的列表.
filelist = files # 注意此处仅是该路径下的其中一个列表
# print('list', list)
# filelist = os.listdir(self.path) #获取文件路径
total_num = len(filelist) # 获取文件长度(个数)
for item in filelist:
if item.endswith('.jpg'): # 初始的图片的格式为jpg格式的(或者源文件是png格式及其他格式,后面的转换格式就可以调整为自己需要的格式即可)
src = os.path.join(os.path.abspath(aroot), item)
# 修改图片尺寸到128宽*256高
im = Image.open(src)
out = im.resize((128, 256), Image.ANTIALIAS) # resize image with high-quality
out.save(src) # 原路径保存
def rename(self):
for aroot, dirs, files in os.walk(self.path):
# aroot是self.path目录下的所有子目录(含self.path),dir是self.path下所有的文件夹的列表.
filelist = files # 注意此处仅是该路径下的其中一个列表
# print('list', list)
# filelist = os.listdir(self.path) #获取文件路径
total_num = len(filelist) # 获取文件长度(个数)
i = 1 # 表示文件的命名是从1开始的
for item in filelist:
if item.endswith('.jpg'): # 初始的图片的格式为jpg格式的(或者源文件是png格式及其他格式,后面的转换格式就可以调整为自己需要的格式即可)
src = os.path.join(os.path.abspath(aroot), item)
# 根据图片名创建图片目录
dirname = str(item.split('_')[0])
# 为相同车辆创建目录
# new_dir = os.path.join(self.path, '..', 'bbox_all', dirname)
new_dir = os.path.join(PATH_ALL_IMAGES, dirname)
if not os.path.isdir(new_dir):
mymkdir(new_dir)
# 获得new_dir中的图片数
num_pic = len(os.listdir(new_dir))
dst = os.path.join(os.path.abspath(new_dir),
dirname + 'C1T0001F' + str(num_pic + 1) + '.jpg')
# 处理后的格式也为jpg格式的,当然这里可以改成png格式 C1T0001F见mars.py filenames 相机ID,跟踪指数
# dst = os.path.join(os.path.abspath(self.path), '0000' + format(str(i), '0>3s') + '.jpg') 这种情况下的命名格式为0000000.jpg形式,可以自主定义想要的格式
try:
copyfile(src, dst) # os.rename(src, dst)
print('converting %s to %s ...' % (src, dst))
i = i + 1
except:
continue
print('total %d to rename & converted %d jpgs' % (total_num, i))
def split(self):
# ---------------------------------------
# train_test
images_path = PATH_ALL_IMAGES
train_save_path = PATH_TRAIN
test_save_path = PATH_TEST
if not os.path.isdir(train_save_path):
os.mkdir(train_save_path)
os.mkdir(test_save_path)
for _, dirs, _ in os.walk(images_path, topdown=True):
for i, dir in enumerate(dirs):
for root, _, files in os.walk(images_path + '/' + dir, topdown=True):
for j, file in enumerate(files):
if (j == 0): # test dataset;每个车辆的第一幅图片
print("序号:%s 文件夹: %s 图片:%s 归为测试集" % (i + 1, root, file))
src_path = root + '/' + file
dst_dir = test_save_path + '/' + dir
if not os.path.isdir(dst_dir):
os.mkdir(dst_dir)
dst_path = dst_dir + '/' + file
move(src_path, dst_path)
else:
src_path = root + '/' + file
dst_dir = train_save_path + '/' + dir
if not os.path.isdir(dst_dir):
os.mkdir(dst_dir)
dst_path = dst_dir + '/' + file
move(src_path, dst_path)
rmtree(PATH_ALL_IMAGES)
if __name__ == '__main__':
demo = BatchRename()
demo.resize()
demo.rename()
demo.split()
运行代码之后,在/home/zqy/Desktop/yolov5-master/nxm_data/stitches生成了train和test文件夹,每个文件夹中有1501个文件夹,每个test的子目录中的文件里都只有一张图片,因此我将所有test目录下的文件全部删除,将train子目录中的752-1501命名的文件夹放入test子目录中。
1.2修改train.py文件
transform_train = torchvision.transforms.Compose([
torchvision.transforms.Resize((128, 64)),
torchvision.transforms.RandomCrop((128, 64), padding=4),
torchvision.transforms.RandomHorizontalFlip(),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(
[0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
修改149行的权值文件,以免覆盖原来的权值文件
torch.save(checkpoint, './checkpoint/ckpt1.t7')
1.3修改model.py
训练集中有751个类别,因此需要修改类别个数为751
class Net(nn.Module):
def __init__(self, num_classes= 751 ,reid=False): #将num_class修改为自己想要的类别数
super(Net,self).__init__()
# 3 128 64
self.conv = nn.Sequential(
nn.Conv2d(3,64,3,stride=1,padding=1),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
# nn.Conv2d(32,32,3,stride=1,padding=1),
# nn.BatchNorm2d(32),
# nn.ReLU(inplace=True),
nn.MaxPool2d(3,2,padding=1),
)
3.开始训练
3.1修改train.py下的数据集地址
其他参数可使用默认值文章来源:https://www.toymoban.com/news/detail-469406.html
parser = argparse.ArgumentParser(description="Train on market1501")
parser.add_argument("--data-dir",default="D:/market1501/stitches",type=str) #修改此处的default 改为自己数据集保存的位置
parser.add_argument("--no-cuda",action="store_true")
parser.add_argument("--gpu-id",default=0,type=int)
parser.add_argument("--lr",default=0.1, type=float)
parser.add_argument("--interval",'-i',default=20,type=int)
parser.add_argument('--resume', '-r',action='store_true')
args = parser.parse_args()
3.2修改epoch数文章来源地址https://www.toymoban.com/news/detail-469406.html
def main():
for epoch in range(start_epoch, start_epoch+40): # 代码默认为跑40个epoch,通过修改后面的数字,可以根据自己的需求控制epoch的数目
train_loss, train_err = train(epoch)
test_loss, test_err = test(epoch)
draw_curve(epoch, train_loss, train_err, test_loss, test_err)
if (epoch+1)%20==0:
lr_decay()
到了这里,关于deepsort训练market1501数据集的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!