什么是轴向注意力(Axial Attention)机制

这篇具有很好参考价值的文章主要介绍了什么是轴向注意力(Axial Attention)机制。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

Axial Attention,轴向注意力,有行注意力(row-attention)和列注意力(column-attention)之分,一般是组合使用。

原文阅读:https://arxiv.org/pdf/1912.12180v1.pdf

self-attention已经显示出了良好的性能,不过其缺点也是明显的:它的使用使得模型的参数量和计算量开始飙增,特别是应用在nlp的长序列问题和图像的像素点上时。以后者为例,单张图像大小为H*W(*3),一个像素点需要和其他所有像素点作注意力,即H*W,一共又有H*W个像素点,则一次self-attention的计算量在O((H*W)2),当图像的分辨率不断增高,这种平方式增长的计算量是不能接受的。
什么是轴向注意力(Axial Attention)机制

轴向注意力应运而生,简单来说,是分别在图像的竖直方向和水平方向分别进行self-attention,这样计算量被削减为O(2*H*W)=O(H*W)

显然,单独使用行或列注意力是无法融合全局信息的,只有组合起来才能获得与full attention相似的性能。

以两个维度为例,组合方式可以先行再列,可以先列再行,也可以分别进行行与列注意力,再对结果分别相加。

  • 先行再列:x1 = RowAtten(x), out = ColAtten(x1)
  • 先列再行:x1 = ColAtten(x), out = RowAtten(x1)
  • 分别进行:out = RowAtten(x) + ColAtten(x)

代码展示可以参考我的另一篇博客论文学习——VideoGPT,使用的是对时间和空间共三个维度分别进行axial attention,再对结果相加的形式。文章来源地址https://www.toymoban.com/news/detail-469672.html

到了这里,关于什么是轴向注意力(Axial Attention)机制的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 深入理解深度学习——注意力机制(Attention Mechanism):注意力汇聚与Nadaraya-Watson 核回归

    分类目录:《深入理解深度学习》总目录 相关文章: ·注意力机制(AttentionMechanism):基础知识 ·注意力机制(AttentionMechanism):注意力汇聚与Nadaraya-Watson核回归 ·注意力机制(AttentionMechanism):注意力评分函数(AttentionScoringFunction) ·注意力机制(AttentionMechanism):Bahda

    2024年02月08日
    浏览(47)
  • 自然语言处理: 第五章Attention注意力机制

    Attention(来自2017年google发表的[1706.03762] Attention Is All You Need (arxiv.org) ),顾名思义是注意力机制,字面意思就是你所关注的东西,比如我们看到一个非常非常的故事的时候,但是其实我们一般能用5W2H就能很好的归纳这个故事,所以我们在复述或者归纳一段文字的时候,我们

    2024年02月17日
    浏览(38)
  • 【Transformer】自注意力机制Self-Attention

    \\\"Transformer\\\"是一种深度学习模型,首次在\\\"Attention is All You Need\\\"这篇论文中被提出,已经成为自然语言处理(NLP)领域的重要基石。这是因为Transformer模型有几个显著的优点: 自注意力机制(Self-Attention) :这是Transformer最核心的概念,也是其最大的特点。 通过自注意力机制,模

    2024年02月13日
    浏览(38)
  • 详解可变形注意力模块(Deformable Attention Module)

    Deformable Attention(可变形注意力)首先在2020年10月初商汤研究院的《Deformable DETR: Deformable Transformers for End-to-End Object Detection》论文中提出,在2022CVPR中《Vision Transformer with Deformable Attention》提出应用了Deformable Attention(可变形自注意力)机制的通用视觉Transformer骨干网络DAT( D

    2024年02月03日
    浏览(42)
  • 深入理解Transformer,兼谈MHSA(多头自注意力)、Cross-Attention(交叉注意力)、LayerNorm、FFN、位置编码

    Transformer其实不是完全的Self-Attention(SA,自注意力)结构,还带有Cross-Attention(CA,交叉注意力)、残差连接、LayerNorm、类似1维卷积的Position-wise Feed-Forward Networks(FFN)、MLP和Positional Encoding(位置编码)等 本文涵盖Transformer所采用的MHSA(多头自注意力)、LayerNorm、FFN、位置编

    2024年04月12日
    浏览(65)
  • 注意力机制——ECANet(Efficient Channel Attention Network)

    ECANet(Efficient Channel Attention Network )是一种新颖的注意力机制,用于深度神经网络中的特征提取,它可以有效地减少模型参数量和计算量,提高模型的性能。 ECANet注意力机制是针对通道维度的注意力加权机制。它的基本思想是,通过学习通道之间的相关性,自适应地调整通道

    2024年02月16日
    浏览(42)
  • 解码注意力Attention机制:从技术解析到PyTorch实战

    在本文中,我们深入探讨了注意力机制的理论基础和实际应用。从其历史发展和基础定义,到具体的数学模型,再到其在自然语言处理和计算机视觉等多个人工智能子领域的应用实例,本文为您提供了一个全面且深入的视角。通过Python和PyTorch代码示例,我们还展示了如何实现

    2024年02月06日
    浏览(33)
  • MMDetection中对Resnet增加注意力机制Attention的简单方法

    以resnet为例子,我在多个尺度的特征层输出增加注意力机制,以此编写一个基类,子类只需要实现这个attention即可。 参考开源仓库实现attention: GitHub - xmu-xiaoma666/External-Attention-pytorch: 🍀 Pytorch implementation of various Attention Mechanisms, MLP, Re-parameter, Convolution, which is helpful to furth

    2024年02月15日
    浏览(95)
  • multi-head_seft-attention(多头自注意力)

    相比于single-head,multi-head就是将 q i q^i q i 分成了 h h h 份 将 q i q^i q i 分成了 h h h 份 计算过程 对于每个Head,我们可以提取出他的 b 11 b_{11} b 11 ​ 到 b m 1 b_{m1} b m 1 ​ ,以 H e a d 1 Head_1 He a d 1 ​ 举例 将输入序列进行embedding后,变为向量 a 1 a_1 a 1 ​ , a 2 a_2 a 2 ​ , a 3 a_3 a 3 ​

    2024年02月13日
    浏览(46)
  • 理解神经网络的注意力机制(Attention)及PyTorch 实现

                     刚刚结束的 2022 年对于人工智能的许多进步来说是不可思议的一年。最近 AI 中的大多数著名地标都是由称为变形金刚的特定类别模型驱动的,无论是 chatGPT 的令人难以置信的进步,它席卷了世界,还是稳定的扩散,它为您的智能手机带来了类似科幻小

    2024年02月05日
    浏览(72)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包