基于ESP32的TCP/IP传输实现

这篇具有很好参考价值的文章主要介绍了基于ESP32的TCP/IP传输实现。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

TCP/IP协议原理

TCP/IP协议是Internet互联网最基本的协议,TCP/IP协议的应用层的主要协议有HTTP、Telnet、FTP、SMTP等,是用来读取来自传输层的数据或者将数据传输写入传输层;传输层的主要协议有UDP、TCP,实现端对端的数据传输;网络层的主要协议有ICMP、IP、IGMP,主要负责网络中数据包的传送等;链路层有时也称作数据链路层或网络接口层,主要协议有ARP、RARP,通常包括操作系统中的设备驱动程序和计算机中对应的网络接口卡,它们一起处理与传输媒介(如电缆或其他物理设备)的物理接口细节。
TCP协议是一个面向连接的、可靠的传输协议,它提供一种可靠的字节流,能保证数据完整、无损并且按顺序到达。TCP尽量连续不断地测试网络的负载并且控制发送数据的速度以避免网络过载。另外,TCP试图将数据按照规定的顺序发送。

ESP32作为热点+TCP服务端

参考乐鑫开源程序,设置wifi模式为AP,运行TCP服务端程序。

ESP32作为站点+TCP客户端

参考乐鑫开源程序,设置wifi模式为STA,运行TCP客户端程序。

AP+TCP服务端程序

主函数

#include <string.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "esp_mac.h"
#include "esp_wifi.h"
#include "esp_event.h"
#include "esp_log.h"
#include "nvs_flash.h"

#include "lwip/err.h"
#include "lwip/sys.h"

#include "tcp_server.h"
/* The examples use WiFi configuration that you can set via project configuration menu.

   If you'd rather not, just change the below entries to strings with
   the config you want - ie #define EXAMPLE_WIFI_SSID "mywifissid"
*/
//#define EXAMPLE_ESP_WIFI_SSID      CONFIG_ESP_WIFI_SSID
//#define EXAMPLE_ESP_WIFI_PASS      CONFIG_ESP_WIFI_PASSWORD
#define EXAMPLE_ESP_WIFI_SSID      "myesp32AP"
#define EXAMPLE_ESP_WIFI_PASS      "esp45678"
#define EXAMPLE_ESP_WIFI_CHANNEL   CONFIG_ESP_WIFI_CHANNEL
#define EXAMPLE_MAX_STA_CONN       CONFIG_ESP_MAX_STA_CONN

#define WIFI_TAG "wifi softAP"
//static const char *WIFI_TAG = "wifi softAP";

static void wifi_event_handler(void* arg, esp_event_base_t event_base,
                                    int32_t event_id, void* event_data)
{
    if (event_id == WIFI_EVENT_AP_STACONNECTED) {
        wifi_event_ap_staconnected_t* event = (wifi_event_ap_staconnected_t*) event_data;
        ESP_LOGI(WIFI_TAG, "station "MACSTR" join, AID=%d",
                 MAC2STR(event->mac), event->aid);
    } else if (event_id == WIFI_EVENT_AP_STADISCONNECTED) {
        wifi_event_ap_stadisconnected_t* event = (wifi_event_ap_stadisconnected_t*) event_data;
        ESP_LOGI(WIFI_TAG, "station "MACSTR" leave, AID=%d",
                 MAC2STR(event->mac), event->aid);
    }
}

void wifi_init_softap(void)
{
    ESP_ERROR_CHECK(esp_netif_init());
    ESP_ERROR_CHECK(esp_event_loop_create_default());
    esp_netif_create_default_wifi_ap();

    wifi_init_config_t cfg = WIFI_INIT_CONFIG_DEFAULT();
    ESP_ERROR_CHECK(esp_wifi_init(&cfg));

    ESP_ERROR_CHECK(esp_event_handler_instance_register(WIFI_EVENT,
                                                        ESP_EVENT_ANY_ID,
                                                        &wifi_event_handler,
                                                        NULL,
                                                        NULL));

    wifi_config_t wifi_config = {
        .ap = {
            .ssid = EXAMPLE_ESP_WIFI_SSID,
            .ssid_len = strlen(EXAMPLE_ESP_WIFI_SSID),
            .channel = EXAMPLE_ESP_WIFI_CHANNEL,
            .password = EXAMPLE_ESP_WIFI_PASS,
            .max_connection = EXAMPLE_MAX_STA_CONN,
            .authmode = WIFI_AUTH_WPA_WPA2_PSK,
            .pmf_cfg = {
                    .required = false,
            },
        },
    };
    if (strlen(EXAMPLE_ESP_WIFI_PASS) == 0) {
        wifi_config.ap.authmode = WIFI_AUTH_OPEN;
    }

    ESP_ERROR_CHECK(esp_wifi_set_mode(WIFI_MODE_AP));
    ESP_ERROR_CHECK(esp_wifi_set_config(WIFI_IF_AP, &wifi_config));
    ESP_ERROR_CHECK(esp_wifi_start());

    ESP_LOGI(WIFI_TAG, "wifi_init_softap finished. SSID:%s password:%s channel:%d",
             EXAMPLE_ESP_WIFI_SSID, EXAMPLE_ESP_WIFI_PASS, EXAMPLE_ESP_WIFI_CHANNEL);
}

void app_main(void)
{
    //Initialize NVS
    esp_err_t ret = nvs_flash_init();
    if (ret == ESP_ERR_NVS_NO_FREE_PAGES || ret == ESP_ERR_NVS_NEW_VERSION_FOUND) {
      ESP_ERROR_CHECK(nvs_flash_erase());
      ret = nvs_flash_init();
    }
    ESP_ERROR_CHECK(ret);

    ESP_LOGI(WIFI_TAG, "ESP_WIFI_MODE_AP");
    wifi_init_softap();
    vTaskDelay(1000 / portTICK_PERIOD_MS);
    
    tcpServerStart();
}

tcp_server.c

/*
#include <string.h>
#include <sys/param.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "esp_system.h"
#include "esp_wifi.h"
#include "esp_event.h"
#include "esp_log.h"
#include "nvs_flash.h"
#include "esp_netif.h"
#include "protocol_examples_common.h"

#include "lwip/err.h"
#include "lwip/sockets.h"
#include "lwip/sys.h"
#include <lwip/netdb.h>
*/

#include "tcp_server.h"

#define PORT                        CONFIG_EXAMPLE_PORT
#define KEEPALIVE_IDLE              CONFIG_EXAMPLE_KEEPALIVE_IDLE
#define KEEPALIVE_INTERVAL          CONFIG_EXAMPLE_KEEPALIVE_INTERVAL
#define KEEPALIVE_COUNT             CONFIG_EXAMPLE_KEEPALIVE_COUNT

#define TCP_TAG "TCP"
//static const char *TCP_TAG= "example";

static void do_retransmit(const int sock)
{
    int len;
    char rx_buffer[128];
    char tx_buffer[128];

    do {
        len = recv(sock, rx_buffer, sizeof(rx_buffer) - 1, 0);
        if (len < 0) {
            ESP_LOGE(TCP_TAG, "Error occurred during receiving: errno %d", errno);
        } else if (len == 0) {
            ESP_LOGW(TCP_TAG, "Connection closed");
        } else {
            rx_buffer[len] = 0; // Null-terminate whatever is received and treat it like a string
            ESP_LOGI(TCP_TAG, "Received %d bytes: %s", len, rx_buffer);

            // send() can return less bytes than supplied length.
            // Walk-around for robust implementation.
            int to_write = len;
            while (to_write > 0) {
                int written = send(sock, rx_buffer + (len - to_write), to_write, 0);
                if (written < 0) {
                    ESP_LOGE(TCP_TAG, "Error occurred during sending: errno %d", errno);
                }
                to_write -= written;
            }


        }
    } while (len > 0);
}
static void tcp_server_task(void *pvParameters)
{
    char addr_str[128];
    int addr_family = (int)pvParameters;
    int ip_protocol = 0;
    int keepAlive = 1;
    int keepIdle = KEEPALIVE_IDLE;
    int keepInterval = KEEPALIVE_INTERVAL;
    int keepCount = KEEPALIVE_COUNT;
    struct sockaddr_storage dest_addr;

    if (addr_family == AF_INET) {
        struct sockaddr_in *dest_addr_ip4 = (struct sockaddr_in *)&dest_addr;
        dest_addr_ip4->sin_addr.s_addr = htonl(INADDR_ANY);
        dest_addr_ip4->sin_family = AF_INET;
        dest_addr_ip4->sin_port = htons(PORT);
        ip_protocol = IPPROTO_IP;
    }
#ifdef CONFIG_EXAMPLE_IPV6
    else if (addr_family == AF_INET6) {
        struct sockaddr_in6 *dest_addr_ip6 = (struct sockaddr_in6 *)&dest_addr;
        bzero(&dest_addr_ip6->sin6_addr.un, sizeof(dest_addr_ip6->sin6_addr.un));
        dest_addr_ip6->sin6_family = AF_INET6;
        dest_addr_ip6->sin6_port = htons(PORT);
        ip_protocol = IPPROTO_IPV6;
    }
#endif

    int listen_sock = socket(addr_family, SOCK_STREAM, ip_protocol);
    if (listen_sock < 0) {
        ESP_LOGE(TCP_TAG, "Unable to create socket: errno %d", errno);
        vTaskDelete(NULL);
        return;
    }
    int opt = 1;
    setsockopt(listen_sock, SOL_SOCKET, SO_REUSEADDR, &opt, sizeof(opt));
#if defined(CONFIG_EXAMPLE_IPV4) && defined(CONFIG_EXAMPLE_IPV6)
    // Note that by default IPV6 binds to both protocols, it is must be disabled
    // if both protocols used at the same time (used in CI)
    setsockopt(listen_sock, IPPROTO_IPV6, IPV6_V6ONLY, &opt, sizeof(opt));
#endif

    ESP_LOGI(TCP_TAG, "Socket created");

    int err = bind(listen_sock, (struct sockaddr *)&dest_addr, sizeof(dest_addr));
    if (err != 0) {
        ESP_LOGE(TCP_TAG, "Socket unable to bind: errno %d", errno);
        ESP_LOGE(TCP_TAG, "IPPROTO: %d", addr_family);
        goto CLEAN_UP;
    }
    ESP_LOGI(TCP_TAG, "Socket bound, port %d", PORT);

    err = listen(listen_sock, 1);
    if (err != 0) {
        ESP_LOGE(TCP_TAG, "Error occurred during listen: errno %d", errno);
        goto CLEAN_UP;
    }

    while (1) {

        ESP_LOGI(TCP_TAG, "Socket listening");

        struct sockaddr_storage source_addr; // Large enough for both IPv4 or IPv6
        socklen_t addr_len = sizeof(source_addr);
        int sock = accept(listen_sock, (struct sockaddr *)&source_addr, &addr_len);
        if (sock < 0) {
            ESP_LOGE(TCP_TAG, "Unable to accept connection: errno %d", errno);
            break;
        }

        // Set tcp keepalive option
        setsockopt(sock, SOL_SOCKET, SO_KEEPALIVE, &keepAlive, sizeof(int));
        setsockopt(sock, IPPROTO_TCP, TCP_KEEPIDLE, &keepIdle, sizeof(int));
        setsockopt(sock, IPPROTO_TCP, TCP_KEEPINTVL, &keepInterval, sizeof(int));
        setsockopt(sock, IPPROTO_TCP, TCP_KEEPCNT, &keepCount, sizeof(int));
        // Convert ip address to string
        if (source_addr.ss_family == PF_INET) {
            inet_ntoa_r(((struct sockaddr_in *)&source_addr)->sin_addr, addr_str, sizeof(addr_str) - 1);
        }
#ifdef CONFIG_EXAMPLE_IPV6
        else if (source_addr.ss_family == PF_INET6) {
            inet6_ntoa_r(((struct sockaddr_in6 *)&source_addr)->sin6_addr, addr_str, sizeof(addr_str) - 1);
        }
#endif
        ESP_LOGI(TCP_TAG, "Socket accepted ip address: %s", addr_str);

        do_retransmit(sock);

        shutdown(sock, 0);
        close(sock);
    }

CLEAN_UP:
    close(listen_sock);
    vTaskDelete(NULL);
}

void tcpServerStart(void)
{
    //ESP_ERROR_CHECK(nvs_flash_init());
    //ESP_ERROR_CHECK(esp_netif_init());
    //ESP_ERROR_CHECK(esp_event_loop_create_default());

    /* This helper function configures Wi-Fi or Ethernet, as selected in menuconfig.
     * Read "Establishing Wi-Fi or Ethernet Connection" section in
     * examples/protocols/README.md for more information about this function.
     */
    //ESP_ERROR_CHECK(example_connect());

#ifdef CONFIG_EXAMPLE_IPV4
    xTaskCreate(tcp_server_task, "tcp_server", 4096, (void*)AF_INET, 5, NULL);
#endif
#ifdef CONFIG_EXAMPLE_IPV6
    xTaskCreate(tcp_server_task, "tcp_server", 4096, (void*)AF_INET6, 5, NULL);
#endif
}

ATP+TCP客户端程序

主函数

#include <string.h>
#include <sys/param.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/event_groups.h"
#include "esp_system.h"
#include "esp_wifi.h"
#include "esp_event.h"
#include "esp_log.h"
#include "nvs_flash.h"
#include "esp_netif.h"

#include "addr_from_stdin.h"
#include "lwip/err.h"
#include "lwip/sockets.h"

#include "my_wifi.h"
#include "tcp_client.h"

void app_main(void)
{
    //wifi conect

    wifiStaStart();

    //tcp client
    tcpClientStart();
}

my_wifi.c

#include "my_wifi.h"
/* The examples use WiFi configuration that you can set via project configuration menu

   If you'd rather not, just change the below entries to strings with
   the config you want - ie #define EXAMPLE_WIFI_SSID "mywifissid"
*/
#define EXAMPLE_ESP_WIFI_SSID      "myesp32AP"
#define EXAMPLE_ESP_WIFI_PASS      "esp45678"
#define EXAMPLE_ESP_MAXIMUM_RETRY  CONFIG_ESP_MAXIMUM_RETRY

#if CONFIG_ESP_WIFI_AUTH_OPEN
#define ESP_WIFI_SCAN_AUTH_MODE_THRESHOLD WIFI_AUTH_OPEN
#elif CONFIG_ESP_WIFI_AUTH_WEP
#define ESP_WIFI_SCAN_AUTH_MODE_THRESHOLD WIFI_AUTH_WEP
#elif CONFIG_ESP_WIFI_AUTH_WPA_PSK
#define ESP_WIFI_SCAN_AUTH_MODE_THRESHOLD WIFI_AUTH_WPA_PSK
#elif CONFIG_ESP_WIFI_AUTH_WPA2_PSK
#define ESP_WIFI_SCAN_AUTH_MODE_THRESHOLD WIFI_AUTH_WPA2_PSK
#elif CONFIG_ESP_WIFI_AUTH_WPA_WPA2_PSK
#define ESP_WIFI_SCAN_AUTH_MODE_THRESHOLD WIFI_AUTH_WPA_WPA2_PSK
#elif CONFIG_ESP_WIFI_AUTH_WPA3_PSK
#define ESP_WIFI_SCAN_AUTH_MODE_THRESHOLD WIFI_AUTH_WPA3_PSK
#elif CONFIG_ESP_WIFI_AUTH_WPA2_WPA3_PSK
#define ESP_WIFI_SCAN_AUTH_MODE_THRESHOLD WIFI_AUTH_WPA2_WPA3_PSK
#elif CONFIG_ESP_WIFI_AUTH_WAPI_PSK
#define ESP_WIFI_SCAN_AUTH_MODE_THRESHOLD WIFI_AUTH_WAPI_PSK
#endif

/* FreeRTOS event group to signal when we are connected*/
static EventGroupHandle_t s_wifi_event_group;

/* The event group allows multiple bits for each event, but we only care about two events:
 * - we are connected to the AP with an IP
 * - we failed to connect after the maximum amount of retries */
#define WIFI_CONNECTED_BIT BIT0
#define WIFI_FAIL_BIT      BIT1

static const char *TAG = "wifi station";

static int s_retry_num = 0;

static void event_handler(void* arg, esp_event_base_t event_base,
                                int32_t event_id, void* event_data)
{
    if (event_base == WIFI_EVENT && event_id == WIFI_EVENT_STA_START) {
        esp_wifi_connect();
    } else if (event_base == WIFI_EVENT && event_id == WIFI_EVENT_STA_DISCONNECTED) {
        if (s_retry_num < EXAMPLE_ESP_MAXIMUM_RETRY) {
            esp_wifi_connect();
            s_retry_num++;
            ESP_LOGI(TAG, "retry to connect to the AP");
        } else {
            xEventGroupSetBits(s_wifi_event_group, WIFI_FAIL_BIT);
        }
        ESP_LOGI(TAG,"connect to the AP fail");
    } else if (event_base == IP_EVENT && event_id == IP_EVENT_STA_GOT_IP) {
        ip_event_got_ip_t* event = (ip_event_got_ip_t*) event_data;
        ESP_LOGI(TAG, "got ip:" IPSTR, IP2STR(&event->ip_info.ip));
        s_retry_num = 0;
        xEventGroupSetBits(s_wifi_event_group, WIFI_CONNECTED_BIT);
    }
}

void wifi_init_sta(void)
{
    s_wifi_event_group = xEventGroupCreate();

    ESP_ERROR_CHECK(esp_netif_init());

    ESP_ERROR_CHECK(esp_event_loop_create_default());
    esp_netif_create_default_wifi_sta();

    wifi_init_config_t cfg = WIFI_INIT_CONFIG_DEFAULT();
    ESP_ERROR_CHECK(esp_wifi_init(&cfg));

    esp_event_handler_instance_t instance_any_id;
    esp_event_handler_instance_t instance_got_ip;
    ESP_ERROR_CHECK(esp_event_handler_instance_register(WIFI_EVENT,
                                                        ESP_EVENT_ANY_ID,
                                                        &event_handler,
                                                        NULL,
                                                        &instance_any_id));
    ESP_ERROR_CHECK(esp_event_handler_instance_register(IP_EVENT,
                                                        IP_EVENT_STA_GOT_IP,
                                                        &event_handler,
                                                        NULL,
                                                        &instance_got_ip));

    wifi_config_t wifi_config = {
        .sta = {
            .ssid = EXAMPLE_ESP_WIFI_SSID,
            .password = EXAMPLE_ESP_WIFI_PASS,
            /* Authmode threshold resets to WPA2 as default if password matches WPA2 standards (pasword len => 8).
             * If you want to connect the device to deprecated WEP/WPA networks, Please set the threshold value
             * to WIFI_AUTH_WEP/WIFI_AUTH_WPA_PSK and set the password with length and format matching to
	     * WIFI_AUTH_WEP/WIFI_AUTH_WPA_PSK standards.
             */
            .threshold.authmode = ESP_WIFI_SCAN_AUTH_MODE_THRESHOLD,
            .sae_pwe_h2e = WPA3_SAE_PWE_BOTH,
        },
    };
    ESP_ERROR_CHECK(esp_wifi_set_mode(WIFI_MODE_STA) );
    ESP_ERROR_CHECK(esp_wifi_set_config(WIFI_IF_STA, &wifi_config) );
    ESP_ERROR_CHECK(esp_wifi_start() );

    ESP_LOGI(TAG, "wifi_init_sta finished.");

    /* Waiting until either the connection is established (WIFI_CONNECTED_BIT) or connection failed for the maximum
     * number of re-tries (WIFI_FAIL_BIT). The bits are set by event_handler() (see above) */
    EventBits_t bits = xEventGroupWaitBits(s_wifi_event_group,
            WIFI_CONNECTED_BIT | WIFI_FAIL_BIT,
            pdFALSE,
            pdFALSE,
            portMAX_DELAY);

    /* xEventGroupWaitBits() returns the bits before the call returned, hence we can test which event actually
     * happened. */
    if (bits & WIFI_CONNECTED_BIT) {
        ESP_LOGI(TAG, "connected to ap SSID:%s password:%s",
                 EXAMPLE_ESP_WIFI_SSID, EXAMPLE_ESP_WIFI_PASS);
    } else if (bits & WIFI_FAIL_BIT) {
        ESP_LOGI(TAG, "Failed to connect to SSID:%s, password:%s",
                 EXAMPLE_ESP_WIFI_SSID, EXAMPLE_ESP_WIFI_PASS);
    } else {
        ESP_LOGE(TAG, "UNEXPECTED EVENT");
    }
}

void wifiStaStart(void)
{
    //Initialize NVS
    esp_err_t ret = nvs_flash_init();
    if (ret == ESP_ERR_NVS_NO_FREE_PAGES || ret == ESP_ERR_NVS_NEW_VERSION_FOUND) {
      ESP_ERROR_CHECK(nvs_flash_erase());
      ret = nvs_flash_init();
    }
    ESP_ERROR_CHECK(ret);

    ESP_LOGI(TAG, "ESP_WIFI_MODE_STA");
    wifi_init_sta();
    //tcpStart();

}

tcp_client.c

#include "tcp_client.h"

#if defined(CONFIG_EXAMPLE_IPV4)
#define HOST_IP_ADDR CONFIG_EXAMPLE_IPV4_ADDR
#elif defined(CONFIG_EXAMPLE_IPV6)
#define HOST_IP_ADDR CONFIG_EXAMPLE_IPV6_ADDR
#else
#define HOST_IP_ADDR ""
#endif

#define PORT CONFIG_EXAMPLE_PORT

static const char *TAGC = "example";
static const char *payload = "Message from Client1:tem,hum,c2h4 ";

static void tcp_client_task(void *pvParameters)
{
    char rx_buffer[128];
    char host_ip[] = HOST_IP_ADDR;
    int addr_family = 0;
    int ip_protocol = 0;

    while (1) {
#if defined(CONFIG_EXAMPLE_IPV4)
        struct sockaddr_in dest_addr;
        dest_addr.sin_addr.s_addr = inet_addr(host_ip);
        dest_addr.sin_family = AF_INET;
        dest_addr.sin_port = htons(PORT);
        addr_family = AF_INET;
        ip_protocol = IPPROTO_IP;
#elif defined(CONFIG_EXAMPLE_IPV6)
        struct sockaddr_in6 dest_addr = { 0 };
        inet6_aton(host_ip, &dest_addr.sin6_addr);
        dest_addr.sin6_family = AF_INET6;
        dest_addr.sin6_port = htons(PORT);
        dest_addr.sin6_scope_id = esp_netif_get_netif_impl_index(EXAMPLE_INTERFACE);
        addr_family = AF_INET6;
        ip_protocol = IPPROTO_IPV6;
#elif defined(CONFIG_EXAMPLE_SOCKET_IP_INPUT_STDIN)
        struct sockaddr_storage dest_addr = { 0 };
        ESP_ERROR_CHECK(get_addr_from_stdin(PORT, SOCK_STREAM, &ip_protocol, &addr_family, &dest_addr));
#endif
        int sock =  socket(addr_family, SOCK_STREAM, ip_protocol);
        if (sock < 0) {
            ESP_LOGE(TAGC, "Unable to create socket: errno %d", errno);
            break;
        }
        ESP_LOGI(TAGC, "Socket created, connecting to %s:%d", host_ip, PORT);

        int err = connect(sock, (struct sockaddr *)&dest_addr, sizeof(struct sockaddr_in6));
        if (err != 0) {
            ESP_LOGE(TAGC, "Socket unable to connect: errno %d", errno);
            break;
        }
        ESP_LOGI(TAGC, "Successfully connected");

        while (1) {
            int err = send(sock, payload, strlen(payload), 0);
            if (err < 0) {
                ESP_LOGE(TAGC, "Error occurred during sending: errno %d", errno);
                break;
            }

            int len = recv(sock, rx_buffer, sizeof(rx_buffer) - 1, 0);
            // Error occurred during receiving
            if (len < 0) {
                ESP_LOGE(TAGC, "recv failed: errno %d", errno);
                break;
            }
            // Data received
            else {
                rx_buffer[len] = 0; // Null-terminate whatever we received and treat like a string
                ESP_LOGI(TAGC, "Received %d bytes from %s:", len, host_ip);
                ESP_LOGI(TAGC, "%s", rx_buffer);
            }

            vTaskDelay(2000 / portTICK_PERIOD_MS);
        }

        if (sock != -1) {
            ESP_LOGE(TAGC, "Shutting down socket and restarting...");
            shutdown(sock, 0);
            close(sock);
        }
    }
    vTaskDelete(NULL);
}

void tcpClientStart(void)
{
   // ESP_ERROR_CHECK(nvs_flash_init());
   // ESP_ERROR_CHECK(esp_netif_init());
   // ESP_ERROR_CHECK(esp_event_loop_create_default());

    /* This helper function configures Wi-Fi or Ethernet, as selected in menuconfig.
     * Read "Establishing Wi-Fi or Ethernet Connection" section in
     * examples/protocols/README.md for more information about this function.
     */
   // ESP_ERROR_CHECK(example_connect());

    xTaskCreate(tcp_client_task, "tcp_client", 4096, NULL, 5, NULL);
}

注意

需要在Kconfig.projbuild文件中预先进行一些配置如IP,端口号等。CMakeLists.txt需要包含主函数调用的所有c文件。

结果

成功通信运行的结果如下图所示
服务端运行
基于ESP32的TCP/IP传输实现
客户端运行
基于ESP32的TCP/IP传输实现文章来源地址https://www.toymoban.com/news/detail-470030.html

到了这里,关于基于ESP32的TCP/IP传输实现的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • TCP/IP传输协议学习

    TCP/IP传输协议学习

    1.发送方源终端设备的应用创建数据。 2.当数据在源终端设备中沿协议栈向下传递,对其分段和封装。 3.在协议栈网络接入层的介质上生成数据。 4.通过由介质和任意中间设备组成的网际层网络传输数据。 5.在目的终端设备中沿协议栈向上传递时对其解封和重组。   1.TCP/IP协

    2024年02月09日
    浏览(7)
  • ESP32网络编程-TCP客户端数据传输

    本文将详细介绍在Arduino开发环境中,实现一个ESP32 TCP客户端,从而达到与TCP服务器数据交换的目标。 Internet 协议(IP)是 Internet 的地址系统,具有将数据包从源设备传递到目标设备的核心功能。IP 是建立网络连接的主要方式,奠定了 Internet 的基础。IP 不负责数据包排序或错

    2024年02月03日
    浏览(11)
  • 基于 Arduino 库实现 ESP32 TCP Server 应用例程

    基于 Arduino 库实现 ESP32 TCP Server 应用例程

    ESP32 开启 WiFi Station 模式连接路由器 连上路由器后将获取到分配的 IP 地址 基于分配的 IP 地址创建 TCP Server 手机与 ESP32 连接同一路由器 查看 UART0 日志打印,获取 TCP Server 的 IP 地址 使用手机端 TCP 调试 APP 与 ESP32 创建的 TCP Server 建立连接

    2024年02月12日
    浏览(13)
  • 网路原理-传输层UDP,TCP/IP(确认应答,超时重传,连接管理,三次握手,四次挥手,状态转换,流量控制,滑动窗口,拥塞控制,延时应答,捎带应答,异常情况,面向字节流)-网络层(IP协议,地址管理)

    网路原理-传输层UDP,TCP/IP(确认应答,超时重传,连接管理,三次握手,四次挥手,状态转换,流量控制,滑动窗口,拥塞控制,延时应答,捎带应答,异常情况,面向字节流)-网络层(IP协议,地址管理)

    本节重点 • 理解传输层的作⽤,深⼊理解TCP的各项特性和机制 • 对整个TCP/IP协议有系统的理解 • 对TCP/IP协议体系下的其他重要协议和技术有⼀定的了解 我们之前编写完了基本的 java socket ,要知道,我们之前所写的所有代码都在应⽤层,都是为了 完成某项业务,如翻译等。

    2024年04月15日
    浏览(11)
  • ESP32网络开发实例-TCP服务器数据传输

    本文将详细介绍在Arduino开发环境中,实现一个ESP32 TCP服务器,从而达到与TCP客户端数据交换的目标。 Internet 协议(IP)是 Internet 的地址系统,具有将数据包从源设备传递到目标设备的核心功能。IP 是建立网络连接的主要方式,奠定了 Internet 的基础。IP 不负责数据包排序或错

    2024年02月07日
    浏览(13)
  • Linux内核--网络协议栈(五)TCP IP栈的实现原理与具体过程

    一、引言 二、Linux内核的结构 三、Linux网络子系统 四、TCP/IP协议栈 ------4.1、网络架构 ------4.2、协议无关接口 ------4.3、套接口缓存 ------4.4、重要的数据结构 五、网络信息处理流程 ------5.1、硬中断处理 ------5.2、ksoftirqd内核线程处理软中断 ------5.3、网络协议栈处理 ------5.4、

    2024年01月21日
    浏览(43)
  • QT基于TCP协议实现数据传输以及波形绘制——安卓APP及Windows程序双版本

    QT基于TCP协议实现数据传输以及波形绘制——安卓APP及Windows程序双版本

    文章代码有非常非常之详细的解析!!!诸位可放心食用 这个玩意我做了两个,一个是安卓app,一个是Windows程序。代码并非全部都是由我从无到有实现,只是实现了我想要的功能。多亏了巨人的肩膀,开源万岁!!! 我把程序放到GitHub上,需要的可自取。 安卓app:   mai

    2024年02月15日
    浏览(10)
  • 网络原理(四):传输层协议 TCP/UDP

    网络原理(四):传输层协议 TCP/UDP

    目录 应用层 传输层 udp 协议  端口号 报文长度(udp 长度) 校验和 TCP 协议 确认应答 超时重传 链接管理 滑动窗口 流量控制 拥塞控制 延时应答 捎带应答 总结 我们第一章让我们对网络有了一个初步认识,第二章和第三章我们通过代码感受了网络通信程序。 而本章的 通信原

    2023年04月27日
    浏览(10)
  • 基于 Arduino 库实现 ESP32 使能 WiFi AP + TCP Server 的应用

    基于 Arduino 库实现 ESP32 使能 WiFi AP + TCP Server 的应用

    ESP32 开启 WiFi AP 模式创建 WiFi 热点 定义 IP 地址 创建 TCP Server 使用手机连接 ESP32 创建的 AP 热点 查看 UART0 日志打印,获取 TCP Server 的 IP 地址 使用手机端 TCP 调试 APP( 网络助手 ) 与 ESP32 创建的 TCP Server 建立连接

    2024年02月12日
    浏览(38)
  • UDP(用户数据报协议)和TCP(传输控制协议)是互联网协议(IP)中两种主要的传输层协议

    UDP(用户数据报协议)和TCP(传输控制协议)是互联网协议(IP)中两种主要的传输层协议

    您的描述是正确的。UDP(用户数据报协议)和TCP(传输控制协议)是互联网协议(IP)中两种主要的传输层协议。他们之间有几个重要的区别,其中之一就是建立连接的方式。 连接方式: • TCP:在进行数据传输之前,需要通过三次握手(3-way handshake)建立连接。这可以确保

    2024年02月02日
    浏览(56)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包