压缩感知重构之匹配追踪算法

这篇具有很好参考价值的文章主要介绍了压缩感知重构之匹配追踪算法。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

算法的重构是压缩感知中重要的一步,是压缩感知的关键之处。因为重构算法关系着信号能否精确重建,国内外的研究学者致力于压缩感知的信号重建,并且取得了很大的进展,提出了很多的重构算法,每种算法都各有自己的优缺点,使用者可以根据自己的情况,选择适合自己的重构算法,大大增加了使用的灵活性,也为我们以后的研究提供了很大的方便。

压缩感知的重构算法主要分为三大类:

1.组合算法   2.贪婪算法  3.凸松弛算法

三种算法对比分析如下:

算法类别

定义

优缺点

具体算法

贪婪算法

贪婪算法首先选取合适的原子,再逐步进行递增,进而逼近信号矢量,利用这种过程进行

计算量和精度的要求居中,也是三种重构算法中应用最大的一种

(1)匹配追踪算法

(2)正交匹配追踪算法

(3)分段正交匹配追踪算法

(4)正则化正交匹配追踪算法

(5)稀疏自适应匹配追踪算法

组合算法

先是对信号进行结构采样,然后再通过对采样的数据进行分组测试,最后完成信号的重构

需要观测的样本数目比较多但运算的效率最高

(1) 傅里叶采样

(2) 链式追踪算法

(3)  HHS追踪算法

凸松弛算法

法,它将非凸问题转化为凸问题进行求解,即l0范数转化成l1范数并采用线性规划来求解

计算量大但是需要观测的数量少重构的时候精度高

(1)基追踪算法

(2)最小全变差算法

(3)内点法

(4)梯度投影算法

(5)凸集交替投影算法

本篇主要分析匹配追踪算法(Matching Pursuit  MP)

匹配追踪算法是Mallat和ZHANG在小波分析的基础上提出的,是贪婪迭代算法中的比较基本的算法,有其显著的特点,是学习研究贪婪算法的基础。

1、MP算法的原理

压缩感知重构之匹配追踪算法

 其中测量矩阵又称为过完备字典,每一列被称为一个原子,则测量矩阵中有n个原子,而y的长度为m,原子的个数远远大于信号的长度,即m<<n,因此测量矩阵又称为过完备字典。信号y在测量矩阵上进行分解,单位向量长度为1,要对过完备字典的原子进行归一化处理。

MP算法的基本思想:

从观测矩阵(过完备字典)中选择一个与信号y相关性最大(最匹配)的原子,也就是观测矩阵中的一列,构建信号的稀疏逼近,求出信号的残差,重复上面的操作,继续选择与信号残差最匹配的一个原子,如此反复迭代直到达到迭代次数,最后信号y就可以表示为这些原子的线性组合。

2、MP算法的理论框图

根据MP算法的原理,得出MP算法的理论图,这样更容易理解。

压缩感知重构之匹配追踪算法

 3、MP算法的算法流程

根据MP算法的理论框图,现在写出MP算法的算法流程,这样让我们对MP算法有一个更加清晰的理解。

压缩感知重构之匹配追踪算法

  4、MP算法的信号重构

分别通过对一维离散信号,二维Lena为例,进行MP算法的信号重构。

(1)一维离散信号的MP算法仿真

  本次仿真使用matlab随机生成的一维离散信号,稀疏度k=23,信号长度N=256,观测向量的长度M=80,那么采样率M/N=0.3,其中的观测矩阵是高斯随机矩阵。采用MP算法对一维信号进行重构,重构图:

压缩感知重构之匹配追踪算法

通过上面的重构可以得出,MP算法对一维信号有很好的重构效果。

(2)二维lena图像的MP算法重构

        我们上面的研究知道MP算法对一维信号有很好的重构作用,但是算法不只是要在一维信号中有好的重构功能,还要能很好的重构二维信号才可以,这样应用的范围才会更大。我们知道压缩感知重构的是可压缩的稀疏信号,二维信号是不稀疏的,这就要在进行算法重构的时候进行一些处理,我们可以先采用离散余弦变换(dct)使数据稀疏,算法重构结束之后再进行离散反余弦变换(idct),这样就转化为了我们所需要的。本次在matlab中的仿真,我们采用的是256X256的Lena的二维图像,M=180,N=256,稀疏度k=40,M/N=0.7,观测矩阵是高斯随机矩阵,采用MP算法对二维图像进行重构,重构效果如图:

压缩感知重构之匹配追踪算法

压缩感知重构之匹配追踪算法

 采样率为0.7的时候,MP算法也能对二维图像进行精确重构。文章来源地址https://www.toymoban.com/news/detail-470119.html

到了这里,关于压缩感知重构之匹配追踪算法的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【自动驾驶】感知融合中的匹配算法

            匹配算法,就是说当前帧的感知上游输入过来的量测值如何与前一帧的track匹配起来。首先我们需要计算track与量测值之间的距离,然后通过一定的分配算法来找到每个track的最佳匹配。         距离度量是衡量两个目标相近的一种方式,有可能是2D的图像特征度量

    2023年04月08日
    浏览(27)
  • 一.基于压缩感知(CS)的DOA估计方法-OMP-CS算法

    阅读须知: 1.本文为本人原创作品仅供学习参考,未经过本人同意禁止转载和抄袭。 2.要想无障碍阅读本文需要一定的压缩感知理论以及压缩感知信号重构算法基础。 3.话不多说,直接开搞。         假设有K个远场窄带信号入射到有M个天线的均匀线阵上,第k个信号的入

    2024年02月11日
    浏览(33)
  • 压缩感知的未来研究方向

    p2范数优化问题 压缩感知理论在图像压缩编码等方面也应该有很广泛的前景, 但由于信号的恢复方法是建立在12范数意义下, 数据之间还有很大的冗余性没有去除, 相比传统的小波变换编码, 压缩感知理论应用于图像压缩的效果还不理想. p2范数的优化是提高基于压缩感知理论的

    2024年02月08日
    浏览(32)
  • 压缩感知(Compressed Sensing,CS)的基础知识

    压缩感知(Compressed Sensing,CS)是一种用于信号处理的技术,旨在以少于奈奎斯特采样定理所要求的样本频率来重构信号。该技术利用信号的稀疏性,即信号可以用较少的非零系数表示。压缩感知在图像获取中的应用使得在采集过程中就以较少的样本来捕获图像,然后通过算

    2024年02月20日
    浏览(25)
  • VALSE 20200415 | 机器学习 vs 压缩感知:核磁共振成像与重建

    报告主页:http://valser.org/article-359-1.html 20200415 机器学习 vs 压缩感知:核磁共振成像与重建 PPT:Shanshan Wang slides | Bihan Wen slides 谷歌学术: 王珊珊 Shanshan Wang | siat 文碧汉 | ntu 可以参考前面链接中的ppt,这里不重点讲,我们主要关注文碧汉老师的talk。 重建问题简介 计算机视觉

    2024年02月13日
    浏览(40)
  • UEditorPlus v3.3.0 图片上传压缩重构,UI优化,升级基础组件

    UEditor是由百度开发的所见即所得的开源富文本编辑器,基于MIT开源协议,该富文本编辑器帮助不少网站开发者解决富文本编辑器的难点。 UEditorPlus 是有 ModStart 团队基于 UEditor 二次开发的富文本编辑器,主要做了样式的定制,更符合现代浏览器的审美。 在开发过程中解决了部

    2024年02月14日
    浏览(39)
  • 【对于一维信号的匹配】对一个一维(时间)信号y使用自定义基B执行匹配追踪(MP)研究(Matlab代码实现)

     💥💥💞💞 欢迎来到本博客 ❤️❤️💥💥 🏆博主优势: 🌞🌞🌞 博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️ 座右铭: 行百里者,半于九十。 📋📋📋 本文目录如下: 🎁🎁🎁 目录 💥1 概述 📚2 运行结果 🎉3 参考文献 🌈4 Matlab代码实现 对一个

    2024年02月13日
    浏览(32)
  • 神经网络随记-参数矩阵、剪枝、模型压缩、大小匹配、、

    在神经网络中,参数矩阵是模型学习的关键部分,它包含了神经网络的权重和偏置项。下面是神经网络中常见的参数矩阵: 权重矩阵(Weight Matrix):权重矩阵用于线性变换操作,将输入数据与神经元的连接权重相乘。对于全连接层或线性层,每个神经元都有一个权重矩阵。

    2024年02月16日
    浏览(25)
  • 基于自适应曲线阈值和非局部稀疏正则化的压缩感知图像复原研究【自适应曲线阈值去除加性稳态白/有色高斯噪声】(Matlab代码实现)

     💥💥💞💞 欢迎来到本博客 ❤️❤️💥💥 🏆博主优势: 🌞🌞🌞 博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️ 座右铭: 行百里者,半于九十。 📋📋📋 本文目录如下: 🎁🎁🎁 目录 💥1 概述 📚2 运行结果 🎉3 参考文献 🌈4 Matlab代码实现 文献来

    2024年02月13日
    浏览(33)
  • 自动驾驶环境感知之基于深度学习的毫米波雷达感知算法

    (1)基本的数据形式 ADC(数模转换)数据块:由Chirp采样N、每帧内Chirp个数M和天线K组成的三维数据块的中频信号 Range-Azimuth-Doppler数据块:将中频信号数据块分别在距离、速度、角度三个维度上进行FFT操作,得到距离-角度-速度表征的RAD数据块。其中,角度是指水平方向的旋

    2024年01月25日
    浏览(33)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包