KG-BERT: BERT for Knowledge Graph Completion 2019ACL

这篇具有很好参考价值的文章主要介绍了KG-BERT: BERT for Knowledge Graph Completion 2019ACL。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

把BERT用在知识图谱补全上
提出KG-BERT模型,在预训练好的BERT基础上继续fine-tuning。

1.传统KGC方法

传统的KGC方法一般依赖于KGE,而KGE往往通过将KG中的三元组关系投影到某个表示空间中,然后使用打分函数对三元组的合理性进行评估,在用基于正负样本的对比进行模型的训练,而这个表示空间往往和某些数学结构联系在一起,比如最著名的TransE就是向量的加法,RotatE对应了复平面上的旋转,后面还发展出了双曲面、圆锥等各种各样的表示模型。

2.KG-BERT模型

具体的做法就是修改了BERT模型的输入使其适用于知识库三元组的形式。
KG-BERT则直接使用BERT模型对三元组进行打分,它将三元组中的头尾实体和关系转换成对应的文本输入([CLS]head[SEP]relation[SEP]tail[SEP])到BERT模型中,然后使用BERT函数输出结果中的CLS标签作为整个三元组的表示向量,并投影到一个打分函数空间中,然后通过三元组分类这样的任务来对BERT进行微调。

3.三元组分类

KG-BERT(a)

KG-BERT: BERT for Knowledge Graph Completion 2019ACL
 将三元组转换为文本序列模式,将实体、关系的名称或描述文本,通过[CLS]和[SEP]进行顺序拼接,喂入KG-BERT中后,获得[CLS]的表征向量,并进行二分类,判断该三元组是否成立。
KG-BERT: BERT for Knowledge Graph Completion 2019ACL
正样本(三元组即在KG中)和负样本(给定一个三元组,随机替换实体或关系,且确保生成的新的三元组在KG中不存在)

4.关系分类

(KG-BERT-b)

KG-BERT: BERT for Knowledge Graph Completion 2019ACL

KG-BERT也可以完成关系分类,输入两个实体或实体描述,输出多类分类。
这里只是把sigmoid的二分类改成了softmax的关系多分类。
KG-BERT: BERT for Knowledge Graph Completion 2019ACL文章来源地址https://www.toymoban.com/news/detail-470147.html

到了这里,关于KG-BERT: BERT for Knowledge Graph Completion 2019ACL的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Text-Augmented Open Knowledge Graph Completion viaPre-Trained Language Models

    开放知识图谱(KG)完成的任务是从已知的事实中得出新的发现。增加KG完成度的现有工作需要(1)事实三元组来扩大图推理空间,或(2)手动设计提示从预训练的语言模型(PLM)中提取知识,表现出有限的性能,需要专家付出昂贵的努力。为此,我们提出了 TAGREAL ,它自动生成高质量

    2024年02月13日
    浏览(41)
  • KGAT: Knowledge Graph Attention Network for Recommendation

    [1905.07854] KGAT: Knowledge Graph Attention Network for Recommendation (arxiv.org) LunaBlack/KGAT-pytorch (github.com) 目录 1、背景 2、任务定义 3、模型 3.1 Embedding layer 3.2 Attentive Embedding Propagation Layers 3.3 Model Prediction 3.4 Optimization 4、部分代码解读 4.1 数据集 4.2 数据集的处理 4.3 模型 4.4 模型训练 C

    2024年02月16日
    浏览(40)
  • Knowledge Graph Prompting for Multi-Document Question Answering

    本文是LLM系列文章,针对《Knowledge Graph Prompting for Multi-Document Question Answering》的翻译。 大型语言模型的“预训练、提示、预测”范式在开放领域问答(OD-QA)中取得了显著的成功。然而,很少有工作在多文档问答(MD-QA)的场景中探索这种范式,这项任务需要彻底理解不同文

    2024年02月09日
    浏览(41)
  • 2019CVPR Semantic Graph Convolutional Networks for 3D Human Pose Regression

    基于语义图卷积网络的三维人体姿态回归 源码 https://github.com/garyzhao/SemGCN 在本文中,我们研究了学习图卷积网络(GCN)回归的问题。GCN的当前体系结构受限于卷积滤波器和共享的变换矩阵为的小感受野。为了解决这些限制,我们提出了语义图卷积网络(SemGCN),这是一种新

    2024年02月10日
    浏览(36)
  • Commonsense Knowledge Base Completion with Structural and Semantic Context

    与研究较多的传统知识库(如Freebase)相比,常识性知识图(如ATOMIC和ConceptNet)的自动知识库补全提出了独特的挑战。 常识知识图使用自由形式的文本来表示节点,与传统知识库相比,导致节点数量增加了几个数量级(与Freebase (FB15K237)相比,ATOMIC中的节点数量增加了18倍)。 重要的

    2024年02月09日
    浏览(41)
  • 知识图谱(Knowledge Graph)根本概念

    目录 知识图谱 定义 基础概念: 知识图谱构建的关键技术 知识图谱的构建 实体命名识别 知识抽取 实体统一 指代消解 知识图谱的存储 RDF和图数据库的主要特点区别 知识图谱能干什么 反欺诈 不一致性验证 客户失联管理 知识推理 常见图数据库 2012年5月17日,Google 正式提出

    2024年02月13日
    浏览(37)
  • 时空知识图谱研究进展与展望Spatiotemporal Knowledge Graph

    时空知识图谱研究进展与展望 时空知识图谱研究进展与展望 陆锋1, 2, 4, 5, *,  诸云强1, 2, 4,  张雪英3, 4 作者信息  + Spatiotemporal Knowledge Graph: Advances and Perspectives LU Feng1, 2, 4, 5, *,  ZHU Yunqiang1, 2, 4,  ZHANG Xueying3, 4 Author information  + 文章历史  + 摘要 地理信息 的不断泛

    2024年04月22日
    浏览(42)
  • 【论文阅读】SKDBERT: Compressing BERT via Stochastic Knowledge Distillation

    2022-2023年论文系列之模型轻量化和推理加速 通过Connected Papers搜索引用PaBEE/DeeBERT/FastBERT的最新工作,涵盖: 模型推理加速 边缘设备应用 生成模型 BERT模型 知识蒸馏 SmartBERT: A Promotion of Dynamic Early Exiting Mechanism for Accelerating BERT Inference SKDBERT: Compressing BERT via Stochastic Knowledge Di

    2024年02月12日
    浏览(39)
  • 生成式AI - Knowledge Graph Prompting:一种基于大模型的多文档问答方法

    大型语言模型(LLM)已经彻底改变了自然语言处理(NLP)任务。它们改变了我们与文本数据交互和处理的方式。这些强大的AI模型,如OpenAI的GPT-4,改变了理解、生成人类类似文本的方式,导致各种行业出现了众多突破性应用。 LangChain是一个用于构建基于大型语言模型(如G

    2024年02月20日
    浏览(37)
  • 论文阅读 - Non-Local Spatial Propagation Network for Depth Completion

    本文提出了一种非局部的空间传播网络用于深度图补全,简称为NLSPN。 (1)为什么需要深度图补全? 在AR、无人机控制、自动驾驶和运动规划等应用当中,需要知道物体的稠密深度信息。现有的大部分深度传感器,如雷达、RGB-D相机等,可以提供RGB图片和准确的稀疏深度图,

    2024年02月19日
    浏览(46)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包