SynchronousQueue 是一个比较特别的队列,由于在线程池方面有所应用,为了更好的理解线程池的实现原理,
此队列源码中充斥着大量的CAS语句,理解起来是有些难度的,为了方便日后回顾,本篇文章会以简洁的图形化方式展示该队列底层的实现原理。
SychronousQueue简单实用
经典的生产者-消费者模式,操作流程是这样的:
有多个生产者,可以并发生产产品,把产品置入队列中,如果队列满了,生产者就会阻塞; 有多个消费者,并发从队列中获取产品,如果队列空了,消费者就会阻塞;
SynchronousQueue 也是一个队列来的,但它的特别之处在于它内部没有容器,一个生产线程,当它生产产品(即put的时候),如果当前没有人想要消费产品(即当前没有线程执行take),此生产线程必须阻塞,等待一个消费线程调用take操作,take操作将会唤醒该生产线程,同时消费线程会获取生产线程的产品(即数据传递),这样的一个过程称为一次配对过程(当然也可以先take后put,原理是一样的)。
我们用一个简单的代码来验证一下,如下所示:
package com.concurrent;
import java.util.concurrent.SynchronousQueue;
public class SynchronousQueueDemo {
public static void main(String[] args) throws InterruptedException {
final SynchronousQueue<Integer> queue = new SynchronousQueue<Integer>();
Thread putThread = new Thread(new Runnable() {
@Override
public void run() {
System.out.println("put thread start");
try {
queue.put(1);
} catch (InterruptedException e) {
}
System.out.println("put thread end");
}
});
Thread takeThread = new Thread(new Runnable() {
@Override
public void run() {
System.out.println("take thread start");
try {
System.out.println("take from putThread: " + queue.take()); } catch (InterruptedException e) {
}
System.out.println("take thread end");
}
});
putThread.start();
Thread.sleep(1000);
takeThread.start();
}
}
一种输出结果如下:
put thread start
take thread start
take from putThread: 1
put thread end
take thread end
从结果可以看出,put线程执行queue.put(1) 后就被阻塞了,只有take线程进行了消费,put线程才可以返回。
可以认为这是一种线程与线程间一对一传递消息的模型。
SychronousQueue实现原理
不 像 ArrayBlockingQueue 、 LinkedBlockingDeque 之类 的 阻 塞队列依 赖 AQS 实 现 并发 操作 ,SynchronousQueue直接使用CAS实现线程的安全访问。
队列的实现策略通常分为公平模式和非公平模式,接下来将分别进行说明。
公平模式下的模型:
公平模式下,底层实现使用的是TransferQueue这个内部队列,它有一个head和tail指针,用于指向当前正在等待匹配的线程节点。
初始化时,TransferQueue的状态如下:
接着我们进行一些操作:
1、线程put1执行 put(1)操作,由于当前没有配对的消费线程,所以put1线程入队列,自旋一小会后睡眠等待,这时队列状态如下:
2、接着,线程put2执行了put(2)操作,跟前面一样,put2线程入队列,自旋一小会后睡眠等待,这时队列
状态如下:
3、这时候,来了一个线程take1,执行了 take操作,由于tail指向put2线程,put2线程跟take1线程配对了(一put一take),这时take1线程不需要入队,但是请注意了,这时候,要唤醒的线程并不是put2,而是put1。
为何? 大家应该知道我们现在讲的是公平策略,所谓公平就是谁先入队了,谁就优先被唤醒,我们的例子明显是put1 应该优先被唤醒。至于读者可能会有一个疑问,明明是 take1 线程跟 put2 线程匹配上了,结果是 put1 线程被唤醒消费,怎么确保take1线程一定可以和次首节点(head.next)也是匹配的呢?其实大家可以拿个纸画一画,就会发现真的就是这样的。
公平策略总结下来就是:队尾匹配队头出队。
执行后put1线程被唤醒,take1线程的 take()方法返回了1(put1线程的数据),这样就实现了线程间的一对一通信,这时候内部状态如下:
4、最后,再来一个线程take2,执行take操作,这时候只有put2线程在等候,而且两个线程匹配上了,线程put2被唤醒, take2线程take操作返回了2(线程put2的数据),这时候队列又回到了起点,如下所示:
以上便是公平模式下,SynchronousQueue的实现模型。总结下来就是:队尾匹配队头出队,先进先出,体现公平原则。
非公平模式下的模型:
我们还是使用跟公平模式下一样的操作流程,对比两种策略下有何不同。非公平模式底层的实现使用的是TransferStack,一个栈,实现中用head指针指向栈顶,接着我们看看它的实现模型:
1、线程put1执行 put(1)操作,由于当前没有配对的消费线程,所以put1线程入栈,自旋一小会后睡眠等 待,这时栈状态如下:
head put1线程
2、接着,线程put2再次执行了put(2)操作,跟前面一样,put2线程入栈,自旋一小会后睡眠等待,这时栈状态如下:
head |
put2线程 |
put1线程
栈
3、这时候,来了一个线程take1,执行了take操作,这时候发现栈顶为put2线程,匹配成功,但是实现会先把 take1 线程入栈,然后 take1 线程循环执行匹配 put2 线程逻辑,一旦发现没有并发冲突,就会把栈顶指针直接指向 put1线程
步骤一:
head |
Take1线程 |
循环中匹配put2线程 |
put2线程 |
put1线程栈
步骤二:
head put1线程栈
4、最后,再来一个线程take2,执行take操作,这跟步骤3的逻辑基本是一致的,take2线程入栈, 然后在循环中匹配put1线程,最终全部匹配完毕,栈变为空,恢复初始状态,如下图所示: 步骤一:
head |
Take2线程 |
循环中匹配put1线程 |
put1线程 |
栈
步骤二:
head Null
栈
可以从上面流程看出,虽然put1线程先入栈了,但是却是后匹配,这就是非公平的由来。 文章来源:https://www.toymoban.com/news/detail-470172.html
SychronousQueue总结
SynchronousQueue由于其独有的线程一一配对通信机制,在大部分平常开发中,可能都不太会用到,但线程池技术中会有所使用,由于内部没有使用AQS,而是直接使用CAS,所以代码理解起来会比较困难,但这并不妨碍我们理解底层的实现模型,在理解了模型的基础上,有兴趣的话再查阅源码,就会有方向感,看起来也会比较容易,希望本文有所借鉴意义。 文章来源地址https://www.toymoban.com/news/detail-470172.html
到了这里,关于SychronousQueue同步队列的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!