基于机器学习的内容推荐算法及其心理学、社会学影响闲谈

这篇具有很好参考价值的文章主要介绍了基于机器学习的内容推荐算法及其心理学、社会学影响闲谈。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

基于机器学习的内容推荐算法目前在各类内容类APP中使用的非常普遍。在购物、时尚、新闻咨询、学习等领域,根据用户的喜好,进行较为精准的用户画像与内容推荐。此类算法不但可以较为准确的分析用户的特征,如年龄、性别等,还能通过长期的跟踪维护,大致确定用户的偏好。但过于精确的推荐,对用户的潜在心理学影响越来越受到科学界的重视。本文首先介绍推荐算法的基本原理,再介绍其对用户的心理学、社会学影响。

1. 推荐算法简介

一个用户的浏览或者购买行为,以一定的颗粒度为单位,可以在历史时间轴上构成一串链条。但细分推荐场景,又大致可以分为两类。一是简单互动类,二是复杂互动类。

类别A,简单互动类:典型的是新闻、短视频。用户在一个内容上驻留的时间期望以分钟、秒计,以浏览为主,加以简单的弹幕、点赞等回复。用户在1天内可产生上百个颗粒的浏览行为。

类别B,复杂互动类:典型的是购物、学习。用户较为专注于一类内容,且在某几个单一内容的驻留时间很长,发生较为复杂的事务,如退货、结算、评价等。用户在1天内只会产生少量的颗粒。

尽管这两种类别的推荐算法在数据模型、训练方法上的侧重相当的不同,但依旧有一些共同点。

1.1 内容模型

要描述一个内容的属性,使得机器学习或者简单的模式分类算法可以对其进行处理,就要把内容转化为含有各类属性的向量。

如音乐,可能包含许多属性。既有流派、作曲、演唱、唱片集等枚举类型的标量,也有对波形进行处理后得到的变换域向量,往往体现了整个音轨的起伏、能量区间和频率组合关系。

基于机器学习的内容推荐算法及其心理学、社会学影响闲谈

典型的作品数据含有长度为16的标量区,长度为128的向量区,构成一个144的特征向量。在内容模型中,这个向量就代表确定的一首歌。

M ⃗ = [ M c ⃗ M v ⃗ ] \vec{M}=\begin{bmatrix} \vec{M_c} & \vec{M_v} \end{bmatrix} M =[Mc Mv ]

一个用户的浏览习惯,就是以向量 M ⃗ \vec{M} M 为单位的向量列表,代表了这个用户的n次历史浏览。
{ M ⃗ 0 , M ⃗ 1 , M ⃗ 2 , . . . , M ⃗ n − 1 } \{\vec{M}_0,\vec{M}_1,\vec{M}_2,...,\vec{M}_{n-1}\} {M 0,M 1,M 2,...,M n1}

1.2 没有用户画像的直接预测

对于类别A,由于存在海量的浏览链条,可以采取一种简单朴素的预测算法。这种算法通过输入K次浏览数据,试图对下一颗粒的标量进行预测。

{ M ⃗ t − K , M ⃗ t − K + 1 , . . . , M ⃗ t − 1 } = = > M c , t ⃗ \{\vec{M}_{t-K},\vec{M}_{t-K+1},...,\vec{M}_{t-1}\}==> \vec{M_{c,t}} {M tK,M tK+1,...,M t1}==>Mc,t

一旦获取了预测标量,则可以推荐标量中涉及的唱片集、歌手、风格给用户。

1.3 基于用户模型的推荐

用户模型是对内容受众的数学化描述。比如用户的性别、年龄等等,以及数字化的喜好数据。这类算法目前门类很多,也有不少开源的模型。比较有意思的是,基于用户模型的推荐,并不强调必须要准确获知可被自然人理解的用户特征,比如年龄、性别。比如某一类推荐算法,看起来更像是一种信息压缩与解压的生成式算法。

这种算法,分为用户的特征提取(学习)、基于特征的推荐两步骤。思路是随机从用户习惯中抽取K组特征串{M}输入模型,经过A区的NN网络,输出用户画像 P,并经过B区生成内容模型{M’}。训练的目的,是控制P的规模,并期待输出的内容集合与用户的历史数据集合最为吻合。

基于机器学习的内容推荐算法及其心理学、社会学影响闲谈

这种情况下,P虽然代表用户特征,但其中向量的具体意义已经不再重要了。在具备大量用户的网站,无需对用户全集进行完整的训练,只需要收集到小规模向量P的类别,即可根据新用户的类别直接查表获得推荐内容。

2.精确推荐的负面影响

过于精确的内容推荐,会产生意想不到的心理学、社会学影响,典型的是信息茧房与群体割裂。

2.1 信息茧房

一种典型的影响是信息茧房。当一个用户在初次浏览某个内容网站时,获取的咨询的属性非常宽泛与随机,其首页展现的内容的概率分布是平缓的、均匀的。这段时间是算法收集用户习惯的阶段。

随着浏览次数的增加,推荐算法对用户喜好的掌握越来越精确,使得用户获得的内容集中于感兴趣的若干点上,算法收敛。

基于机器学习的内容推荐算法及其心理学、社会学影响闲谈
对推荐算法不了解的用户尤其会受到影响,他们不会认为早晨起来每天都看到这些内容,是自己被“投其所好”造成的现象。用户获取的信息被算法束缚在一个狭窄的集合内,无法了解到潜在重要的信息。

这种情况对于学习、科学网站,是没有问题的。但对综合类的内容网站,则存在弊端。假设用户在某段时间心理压力大,搜索了负面的内容,则推荐算法可能会推波助澜。尤其是对有抑郁倾向的用户,可能加重病情。

2.2 群体割裂

算法依靠用户习惯为用户画像,并精确推送内容。而用户被画像后推送的内容影响,会产生群体聚集效应。从种群角度来说,各种符号形成的群落会在算法编织的信息茧房里聚集,吸引具备同样特征的个体,而加剧群体的割裂。
基于机器学习的内容推荐算法及其心理学、社会学影响闲谈
这使得整个群体被不断分割、强化,形成很多稳定而不包容的类。这些类无法站在对方的角度思考问题,因为各个类别都生活在算法编制的茧房里,一些统计学上显而易见的小概率事件在各自茧房中放大,一些需要注意的公共问题也无法在不同的群体中传播与取得共识。久而久之种群整体就会被分化,失去稳定性。

3. 应对建议

从算法角度,应该在涉及心理学、社会学的领域引入新的输入。比如在检获有抑郁倾向后,推送治愈系的内容,以及提高推荐算法的丰富程度。文章来源地址https://www.toymoban.com/news/detail-470542.html

到了这里,关于基于机器学习的内容推荐算法及其心理学、社会学影响闲谈的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包