数学建模系列-预测模型(四)马尔可夫预测

这篇具有很好参考价值的文章主要介绍了数学建模系列-预测模型(四)马尔可夫预测。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

1 Markov模型含义

2 模型分析

3 应用题型

 3.1 问题分析

3.2 模型建立

4 Markov模型优缺点


1 Markov模型含义

        马尔可夫(Markov)预测法,就是一种关于事件发生的概率预测方法。它是根据事件的目前状况来预测其将来各个时刻(或时期)变动状况的一种预测方法。马尔可夫预测法是地理预测研究中重要的预测方法之一。

1. 状态

        指某一件事在某个时刻(或时期)出现的某种结果。

2.状态转移过程

        事件的发展,从一种状态转变为另一种状态,称为状态转移。

3.马尔可夫过程

        在事件的发展过程中,若每次状态的转移都仅与前一时刻的状态有关,而与过去的状态无关,或者说状态转移过程是无后效性的,则这样的状态转移过程就称为马尔可夫过程。

4.状态转移概率

        用于描述,在事件的发展变化过程中,从某一种状态出发,在下一时刻转移到其它状态的可能性大小。

        为了求出每一个,一般采用频率近似概率的思想进行计算。

5.状态转移概率矩阵

        假定某一个事件的发展过程有n个可能的状态,即E1,E2,…,En。记为从状态Ei转变为状态Ej的状态转移概率

数学建模系列-预测模型(四)马尔可夫预测

         则状态转移概率矩阵为:

数学建模系列-预测模型(四)马尔可夫预测

 6 状态概率

        表示事件在初始(k=0) 状态为已知的条件下,经过k次状态转移后在第k个时刻(时期)处于状态E_j的概率。根据马尔可夫过程的无后效性及Bayes条件概率公式,有

数学建模系列-预测模型(四)马尔可夫预测

数学建模系列-预测模型(四)马尔可夫预测

        在马尔可夫预测方法中,系统状态的转移概率的估算非常重要.估算的方法通常有两种:一是主观概率法,它是根据人们长期积累的经验以及对预测事件的了解,对事件发生的可能性大小的一种主观估计,这种方法一般是在缺乏历史统计资料或资料不全的情况下使用.二是统计估算法,现通过实例进行介绍。 

 7 第k个时刻(时期)的状态概率预测

        如果某一事件在第0个时刻(或时期)的初始状态已知,即Π(0)已知,则利用递推公式就可以求得它经过k次状态转移后,在第k个时刻(时期)处于各种可能的状态的概率,即 Π(k),从而就得到该事件在第k个时刻(时期) 的状态概率预测。

2 模型分析

        假定系统有m种状态S1,S2,…,Sm,根据系统的状态转移的历史记录,得到表3的统计表格,用P_ij表示系统从状态i转移到状态j的转移概率估计值,则由下表的数据计算估计值的公式如下:

数学建模系列-预测模型(四)马尔可夫预测

         计算转移概率的公式为:

数学建模系列-预测模型(四)马尔可夫预测

3 应用题型

        在购买该药的总共1000家对象(购买力相当的医院、药店等)中,买A、B、C三药厂的各有400家、300家、300家,预测A、B、C三个厂家生产的某种抗病毒药在未来的市场占有情况。顾客订货情况如下表:

数学建模系列-预测模型(四)马尔可夫预测

 3.1 问题分析

        目前的市场占有情况为:在购买该药的总共1000家对象(购买力相当的医院、药店等)中,买A、B、C三药厂的各有400家、300家、300家,那么A、B、C三药厂目前的市场占有份额分别为:40%、30%、30%.称(0.4,0.3,0.3)为目前市场的占有分布或称初始分布.

        此外,我们需要查清使用对象的流动情况。流动情况的调查可通过发放信息调查表来了解顾客以往的资料或将来的购买意向,也可从下一时期的订货单得出。

3.2 模型建立

        假定在未来的时期内,顾客相同间隔时间的流动情况不因时期的不同而发生变化,以1、2、3分别表示顾客买A、B、C三厂家的药这三个状态,以季度为模型的步长(即转移一步所需的时间),那么根据表格,我们可以得模型的转移概率矩阵:

数学建模系列-预测模型(四)马尔可夫预测

         矩阵中的第一行(0.4,0.3,0.3)表示目前是A厂的顾客下季度有40%仍买A厂的药,转为买B厂和C厂的各有30%.同样,第二行、第三行分别表示目前是B厂和C厂的顾客下季度的流向.

4 Markov模型优缺点

        适用范围: 适用于随机现象的数学模型(即在已知现情况的条件下, 系统未来时刻的情况只与现在有关, 而与过去的历史无直接关系) 。

        优点: 研究一个商店, 在未来某一时刻的销售额, 当现在时刻的累计销售额已知。

        缺点: 不适宜用于系统中长期预测。文章来源地址https://www.toymoban.com/news/detail-470797.html

到了这里,关于数学建模系列-预测模型(四)马尔可夫预测的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • 灰色-马尔可夫预测模型

    灰色-马尔可夫预测模型

            在实际生活中,我们经常遇到很多要预测的事情,其中很常见的就是对产品销量的预测,这对于防止产品供应不足或者产品滞销的情况是很有用的。我们要介绍的灰色-马尔可夫模型就是一个比较热门的预测模型,它的特点是: 信息量较小,需要预测的信息较少,指

    2024年02月09日
    浏览(7)
  • 数学建模|预测方法:灰色预测模型

    数学建模|预测方法:灰色预测模型

    灰色系统理论是由华中理工大学邓聚龙教授于1982年提出并加以发展的。二十几年来,引起了不少国内外学者的关注,得到了长足的发展。目前,在我国已经成为社会、经济、科学技术在等诸多领域进行预测、决策、评估、规划控制、系统分析与建模的重要方法之一。特别是它

    2024年02月05日
    浏览(8)
  • 数学建模:灰色预测模型

    数学建模:灰色预测模型

    🔆 文章首发于我的个人博客:欢迎大佬们来逛逛 三个基本方法: 累加数列 :计算一阶累加生成数列 x ( 1 ) ( k ) = ∑ i = 1 k x ( 0 ) ( i ) , k = 1 , 2 , ⋯   , n , x^{(1)}(k)=sum_{i=1}^kx^{(0)}(i),k=1,2,cdots,n, x ( 1 ) ( k ) = i = 1 ∑ k ​ x ( 0 ) ( i ) , k = 1 , 2 , ⋯ , n , 累减数列 :计算一阶累减生

    2024年02月09日
    浏览(11)
  • 【数学建模】 灰色预测模型

    【数学建模】 灰色预测模型

    https://www.cnblogs.com/somedayLi/p/9542835.html https://blog.csdn.net/qq_39798423/article/details/89283000?ops_request_misc=request_id=biz_id=102utm_term=%E7%81%B0%E8%89%B2%E9%A2%84%E6%B5%8B%E6%A8%A1%E5%9E%8Butm_medium=distribute.pc_search_result.none-task-blog-2 all sobaiduweb~default-2-89283000.142 v88 control_2,239 v2 insert_chatgptspm=1018.2226.3001.418

    2024年02月12日
    浏览(7)
  • 数学建模——预测类模型

    数学建模——预测类模型

    定义明晰 中短期预测(短期:1年内;中期:2-5年): 例如天气预报、股票价格预测、销售量预测等。 长期预测(5-10年及以上): 例如人口增长、能源消耗、气候变化等。 中短期预测           数据需求小2/10/100 自变量(多个)+因变量(一个)            不可反

    2024年02月03日
    浏览(7)
  • 数学建模--预测类模型

    数学建模--预测类模型

    目录 一、中短期预测 1、灰色预测法 ①适用范围 ②模型实现  2、回归分析 ①适用范围 ②模型实现  3、时间序列分析 ①自适应滤波法 ②指数平滑法 ③移动平均法 4、微分方程 二、长期预测 1、神经网络预测 2、logistic模型 ①模型介绍 ②模型分析及代码 灰色预测模型 ( G

    2024年02月03日
    浏览(9)
  • 数学建模之“灰色预测”模型

    数学建模之“灰色预测”模型

    1、CUMCM2003A SARS的传播问题 2、CUMCM2005A长江水质的评价和预测CUMCM2006A出版社的资源配置 3、CUMCM2006B艾滋病疗法的评价及疗效的预测问题 4、CUMCM2007A 中国人口增长预测   灰色系统的应用范畴大致分为以下几方面: (1)灰色关联分析。 (2)灰色预测:人口预测;灾变预测....等等。

    2024年02月12日
    浏览(11)
  • 数学建模day16-预测模型

    数学建模day16-预测模型

            本讲首先将介绍灰色预测模型,然后将简要介绍神经网络在数据预测中的应用,在本讲的最 后,我将谈谈清风大佬对于数据预测的一些看法。         注:本文源于数学建模学习交流相关公众号观看学习视频后所作 目录 灰色系统 GM(1,1)模型: Grey(Gray) Model GM(

    2024年01月21日
    浏览(9)
  • 数学建模常用模型(一):灰色预测法

    数学建模常用模型(一):灰色预测法

    灰色预测法是一种用于处理少量数据、数据质量较差或者缺乏历史数据的预测方法。它适用于一些非线性、非平稳的系统,尤其在短期预测和趋势分析方面有着广泛的应用。灰色预测法作为一种强大的数学建模工具,通过利用有限的信息,能够在不完备的条件下进行准确的预

    2024年02月09日
    浏览(11)
  • 数学建模常用模型(六):时间序列预测

    数学建模常用模型(六):时间序列预测

    时间序列预测是数学建模中的一个重要领域,用于预测时间序列数据中未来的趋势和模式。时间序列预测可以帮助我们了解数据的演变规律,做出合理的决策和规划。 这是我自己总结的一些代码和资料(本文中的代码以及参考书籍等),放在github上供大家参考: https://githu

    2024年02月13日
    浏览(8)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包