-
目录
RTMPose关键点检测全流程
MMPose官方可视化工具visualizer
代码实现:
-
RTMPose关键点检测全流程
- MMPose预训练模型预测-命令行
- 预测单张图
-
# HRNet python .\demo\topdown_demo_with_mmdet.py .\demo\mmdetection_cfg\faster_rcnn_r50_fpn_coco.py https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth .\configs\body_2d_keypoint\topdown_heatmap\coco\td-hm_hrnet-w32_8xb64-210e_coco-256x192.py https://download.openmmlab.com/mmpose/top_down/hrnet/hrnet_w32_coco_256x192-c78dce93_20200708.pth --input .\data\test\multi-person.jpeg --output-root .\outputs\B1_HRNet_1 --dev cuda:0 --bbox-thr 0.5 --kpt-thr 0.2 --nms-thr 0.3 --radius 8 --thickness 4 --draw-bbox --draw-heatmap --show-kpt-idx
- Loads checkpoint by http backend from path: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth
Loads checkpoint by http backend from path: https://download.openmmlab.com/mmpose/top_down/hrnet/hrnet_w32_coco_256x192-c78dce93_20200708.pth
06/03 20:47:33 - mmengine - WARNING - `Visualizer` backend is not initialized because save_dir is None. -
#RTMPose python .\demo\topdown_demo_with_mmdet.py .\demo\mmdetection_cfg\faster_rcnn_r50_fpn_coco.py https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth .\projects\rtmpose\rtmpose\body_2d_keypoint\rtmpose-s_8xb256-420e_coco-256x192.py https://download.openmmlab.com/mmpose/v1/projects/rtmpose/rtmpose-s_simcc-aic-coco_pt-aic-coco_ 420e-256x192-fcb2599b_20230126.pth --input .\data\test\multi-person.jpeg --output-root .\outputs\B1_RTM_1 --d evice cuda:0 --bbox-thr 0.5 --kpt-thr 0.5 --nms-thr 0.3 --radius 8 --thickness 4 --draw-bbox --draw-heatmap --show-kpt-idx
- Loads checkpoint by http backend from path: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth
Loads checkpoint by http backend from path: https://download.openmmlab.com/mmpose/v1/projects/rtmpose/rtmpose-s_simcc-aic-coco_pt-aic-coco_420e-256x192-fcb2599b_20230126.pth
Downloading: "https://download.openmmlab.com/mmpose/v1/projects/rtmpose/rtmpose-s_simcc-aic-coco_pt-aic-coco_420e-256x192-fcb2599b_20230126.pth" to C:\Users\16798/.cache\torch\hub\checkpoints\rtmpose-s_simcc-aic-coco_pt-aic-coco_420e-256x192-fcb2599b_20230126.pth
100%|██████████████████████████████████████████████████████████████████| 60.8M/60.8M [00:37<00:00, 1.71MB/s]
06/03 23:04:00 - mmengine - WARNING - `Visualizer` backend is not initialized because save_dir is None.
d:\workspace\.git\mmpose\mmpose\models\heads\coord_cls_heads\rtmcc_head.py:217: UserWarning: The predicted si
mcc values are normalized for visualization. This may cause discrepancy between the keypoint scores and the 1D heatmaps.
warnings.warn('The predicted simcc values are normalized for '
-
- 预测视频:直接将--input 换成视频路径即可
-
#HRNet python .\demo\topdown_demo_with_mmdet.py .\demo\mmdetection_cfg\faster_rcnn_r50_fpn_coco.py https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth .\configs\body_2d_keypoint\topdown_heatmap\coco\td-hm_hrnet-w32_8xb64-210e_coco-256x192.py https://download.openmmlab.com/mmpose/top_down/hrnet/hrnet_w32_coco_256x192-c78dce93_20200708.pth --input .\data\test\mother_wx.mp4 --output-root .\outputs\B1_HRNet_2 --device cuda:0 --bbox-thr 0.5 --kpt-thr 0.2 --nms-thr 0.3 --radius 5 --thickness 2 --draw-bbox --draw-heatmap --show-kpt-idx
- Loads checkpoint by http backend from path: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth
Loads checkpoint by http backend from path: https://download.openmmlab.com/mmpose/top_down/hrnet/hrnet_w32_coco_256x192-c78dce93_20200708.pth
06/03 23:11:03 - mmengine - WARNING - `Visualizer` backend is not initialized because save_dir is None.
-
#TRMPose python .\demo\topdown_demo_with_mmdet.py .\demo\mmdetection_cfg\faster_rcnn_r50_fpn_coco.py https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth projects/rtmpose/rtmpose/body_2d_keypoint/rtmpose-s_8xb256-420e_coco-256x192.py https://download.openmmlab.com/mmpose/v1/projects/rtmpose/rtmpose-s_simcc-aic-coco_pt-aic-coco_420e-256x192-fcb2599b_20230126.pth --input data/test/mother_wx.mp4 --output-root outputs/B1_RTM_2 --device cuda:0 --bbox-thr 0.5 --kpt-thr 0.5 --nms-thr 0.3 --radius 5 --thickness 2 --draw-bbox --draw-heatmap --show-kpt-idx
- Loads checkpoint by http backend from path: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth
Loads checkpoint by http backend from path: https://download.openmmlab.com/mmpose/v1/projects/rtmpose/rtmpose-s_simcc-aic-coco_pt-aic-coco_420e-256x192-fcb2599b_20230126.pth
06/03 23:14:39 - mmengine - WARNING - `Visualizer` backend is not initialized because save_dir is None.
d:\workspace\.git\mmpose\mmpose\models\heads\coord_cls_heads\rtmcc_head.py:217: UserWarning: The predicted si
mcc values are normalized for visualization. This may cause discrepancy between the keypoint scores and the 1D heatmaps.
warnings.warn('The predicted simcc values are normalized for '
-
- 预测单张图
- MMPose预测训练模型预测-Python API
-
import cv2 import numpy as np from PIL import Image import matplotlib.pyplot as plt import torch import mmcv from mmcv import imread import mmengine from mmengine.registry import init_default_scope from mmpose.apis import inference_topdown from mmpose.apis import init_model as init_pose_estimator from mmpose.evaluation.functional import nms from mmpose.registry import VISUALIZERS from mmpose.structures import merge_data_samples from mmdet.apis import inference_detector, init_detector # 设备 device = torch.device('cuda') if torch.cuda.is_available() else torch.device( 'cpu') print('device:', device) # 载入待测图片 img_path = 'data/test/multi-person.jpeg' # 打开图片 Image.open(img_path) # 构建目标检测模型 # Faster RCNN detector = init_detector( 'demo/mmdetection_cfg/faster_rcnn_r50_fpn_coco.py', 'https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth', device=device) # RTMPose-Tiny detector = init_detector( 'projects/rtmpose/rtmdet/person/rtmdet_m_640-8xb32_coco-person.py', 'https://download.openmmlab.com/mmpose/v1/projects/rtmpose/rtmdet_m_8xb32-100e_coco-obj365-person-235e8209.pth', device=device) # 构建人体姿态估计模型 pose_estimator = init_pose_estimator( 'configs/body_2d_keypoint/topdown_heatmap/coco/td-hm_hrnet-w32_8xb64-210e_coco-256x192.py', 'https://download.openmmlab.com/mmpose/top_down/hrnet/hrnet_w32_coco_256x192-c78dce93_20200708.pth', device=device, cfg_options={'model': { 'test_cfg': { 'output_heatmaps': True } }}) # 预测-目标检测 init_default_scope(detector.cfg.get('default_scope', 'mmdet')) #获取目标检测预测结果 detect_result = inference_detector(detector, img_path) detect_result.keys() # 预测类别 print(detect_result.pred_instances.labels) # 置信度 print(detect_result.pred_instances.scores) # 框坐标:左上角X坐标、左上角Y坐标、右下角X坐标、右下角Y坐标 print(detect_result.pred_instances.bboxes) # 置信度阈值过滤,获得最终目标检测预测结果 # 置信度阈值 CONF_THRES = 0.5 pred_instance = detect_result.pred_instances.cpu().numpy() bboxes = np.concatenate((pred_instance.bboxes, pred_instance.scores[:, None]), axis=1) bboxes = bboxes[np.logical_and(pred_instance.labels == 0, pred_instance.scores > CONF_THRES)] bboxes = bboxes[nms(bboxes, 0.3)][:, :4] print(bboxes) # 预测-关键点 # 获取每个 bbox 的关键点预测结果 pose_results = inference_topdown(pose_estimator, img_path, bboxes) print(len(pose_results)) # 把多个bbox的pose结果打包到一起 data_samples = merge_data_samples(pose_results) print(data_samples.keys()) # 预测结果-关键点坐标 print(data_samples.pred_instances.keypoints.shape) # 索引为 0 的人,每个关键点的坐标 print(data_samples.pred_instances.keypoints[0,:,:]) # 预测结果-关键点热力图 # 每一类关键点的预测热力图 print(data_samples.pred_fields.heatmaps.shape) idx_point = 13 heatmap = data_samples.pred_fields.heatmaps[idx_point,:,:] print(heatmap.shape) # 索引为 idx 的关键点,在全图上的预测热力图 plt.imshow(heatmap) plt.show()
文章来源:https://www.toymoban.com/news/detail-470814.html
-
MMPose官方可视化工具visualizer
-
# 半径 pose_estimator.cfg.visualizer.radius = 10 # 线宽 pose_estimator.cfg.visualizer.line_width = 8 visualizer = VISUALIZERS.build(pose_estimator.cfg.visualizer) # 元数据 visualizer.set_dataset_meta(pose_estimator.dataset_meta) # 可视化 img = mmcv.imread(img_path) img = mmcv.imconvert(img, 'bgr', 'rgb') img_output = visualizer.add_datasample( 'result', img, data_sample=data_samples, draw_gt=False, draw_heatmap=True, draw_bbox=True, show_kpt_idx=True, show=False, wait_time=0, out_file='outputs/B2.jpg') print(img_output.shape) plt.figure(figsize=(10, 10)) plt.imshow(img_output) plt.show()
文章来源地址https://www.toymoban.com/news/detail-470814.html
-
-
- 多人检测问题
-
代码实现:
- GitHub - guwuyue/OpenMMLabCamp: OpenMMLabCamp
到了这里,关于AI实战营:MMPose开源算法库的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!