目标检测——SE、ECA、CA、SA、CBAM、ShuffleAttention、SimAM、CrissCrossAttention、SK、NAM、GAM、SOCA注意力模块、程序

这篇具有很好参考价值的文章主要介绍了目标检测——SE、ECA、CA、SA、CBAM、ShuffleAttention、SimAM、CrissCrossAttention、SK、NAM、GAM、SOCA注意力模块、程序。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

系列文章目录

目标检测——map概念、IoU汇总IoU、GIoU、DIoU、CIoU、SIoU、EIoU、Wiou、Focal、alpha
目标检测——YOLOv3、YOLOv4、YOLOv5、YOLOv7正负样本匹配、YOLO3损失函数理解
目标检测——SE、ECA、CA、SA、CBAM、ShuffleAttention、SimAM、CrissCrossAttention、SK、NAM、GAM、SOCA注意力模块、程序



1、SE 通道注意力

目标检测——SE、ECA、CA、SA、CBAM、ShuffleAttention、SimAM、CrissCrossAttention、SK、NAM、GAM、SOCA注意力模块、程序
SENet:
1、对输入进来的特征层进行全局平均池化。
2、然后进行两次全连接。
3、取Sigmoid将值固定到0-1之间。
4、将这个权值乘上原输入特征层。
目标检测——SE、ECA、CA、SA、CBAM、ShuffleAttention、SimAM、CrissCrossAttention、SK、NAM、GAM、SOCA注意力模块、程序

import torch
import torch.nn as nn
import math

class se_block(nn.Module):
    def __init__(self, channel, ratio=16):
        super(se_block, self).__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d(1)  # 平均池化
        self.fc = nn.Sequential(
                nn.Linear(channel, channel // ratio, bias=False),   # 全连接
                nn.ReLU(inplace=True),
                nn.Linear(channel // ratio, channel, bias=False),   # 全连接
                nn.Sigmoid()
        )

    def forward(self, x):
        b, c, _, _ = x.size()
        y = self.avg_pool(x).view(b, c)
        y = self.fc(y).view(b, c, 1, 1)
        return x * y

2、ECA 通道注意力

ECANet也是通道注意力机制的一种。ECANet可以看作SENet的改进版。
卷积具有良好的跨通道信息获取能力。ECA把EA的全连接层换成了卷积。
目标检测——SE、ECA、CA、SA、CBAM、ShuffleAttention、SimAM、CrissCrossAttention、SK、NAM、GAM、SOCA注意力模块、程序

class eca_block(nn.Module):
    def __init__(self, channel, b=1, gamma=2):
        super(eca_block, self).__init__()
        kernel_size = int(abs((math.log(channel, 2) + b) / gamma))
        kernel_size = kernel_size if kernel_size % 2 else kernel_size + 1
        
        self.avg_pool = nn.AdaptiveAvgPool2d(1)   # # 平均池化
        self.conv = nn.Conv1d(1, 1, kernel_size=kernel_size, padding=(kernel_size - 1) // 2, bias=False) 
        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        y = self.avg_pool(x) 
        y = self.conv(y.squeeze(-1).transpose(-1, -2)).transpose(-1, -2).unsqueeze(-1)   # 1D卷积
        y = self.sigmoid(y)
        return x * y.expand_as(x)   # expand_as 扩展维度跟x一样

3、 CA 通道注意力

目标检测——SE、ECA、CA、SA、CBAM、ShuffleAttention、SimAM、CrissCrossAttention、SK、NAM、GAM、SOCA注意力模块、程序

目标检测——SE、ECA、CA、SA、CBAM、ShuffleAttention、SimAM、CrissCrossAttention、SK、NAM、GAM、SOCA注意力模块、程序

class ChannelAttention(nn.Module):
    def __init__(self, in_planes, ratio=16):
        super(ChannelAttention, self).__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d(1)   # 平均池化
        self.max_pool = nn.AdaptiveMaxPool2d(1)   # 最大池化
 
        self.fc1 = nn.Conv2d(in_planes, in_planes // ratio, 1, bias=False)
        self.relu1 = nn.ReLU()
        self.fc2 = nn.Conv2d(in_planes // ratio, in_planes, 1, bias=False)
 
        self.sigmoid = nn.Sigmoid()
 
    def forward(self, x):
        avg_out = self.fc2(self.relu1(self.fc1(self.avg_pool(x))))
        max_out = self.fc2(self.relu1(self.fc1(self.max_pool(x))))
        out = avg_out + max_out
        return self.sigmoid(out)

这里只是列出了注意力模块 还需要把最后输出的权值乘上原输入特征层。
例如: x = x * self.ChannelAttention(x),可以参考CBAM那个程序。

4、SA 空间注意力

目标检测——SE、ECA、CA、SA、CBAM、ShuffleAttention、SimAM、CrissCrossAttention、SK、NAM、GAM、SOCA注意力模块、程序

class SpatialAttention(nn.Module):
    def __init__(self, kernel_size=7):
        super(SpatialAttention, self).__init__()
 
        assert  kernel_size in (3,7), 'kernel size must be 3 or 7'
        padding = 3 if kernel_size == 7 else 1
 
        self.conv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False)
        self.sigmoid = nn.Sigmoid()
    def forward(self, x):
        avg_out = torch.mean(x, dim=1, keepdim=True)     # 平均池化
        max_out,_ = torch.max(x, dim=1, keepdim=True)    # 最大池化
        x = torch.cat([avg_out, max_out], dim=1)
        x = self.conv1(x)
        return self.sigmoid(x)

这里只是列出了注意力模块 还需要把最后输出的权值乘上原输入特征层。
例如: x = x * self.SpatialAttention(x),可以参考CBAM那个程序。

5、CBAM(通道注意力和空间注意力)

CBAM是通道注意力机制和空间注意力机制的混合。
通道注意力机制:通道注意力机制可以分为两部分,首先对输入进来的单个特征层,分别进行全局平均池化和全局最大池化。之后对平均池化和最大池化的结果,利用共享的全连接层进行处理,对处理后的两个结果进行相加,取Sigmoid将值固定到0-1之间。获得这个权值,将这个权值乘上原输入特征层。
空间注意力机制:对输入进来的特征层,在每一个特征点的通道上取最大值和平均值。之后将这两个结果进行一个堆叠,利用一次通道数为1的卷积调整通道数,取Sigmoid将值固定到0-1之间。获得这个权值,将这个权值乘上原输入特征层。
目标检测——SE、ECA、CA、SA、CBAM、ShuffleAttention、SimAM、CrissCrossAttention、SK、NAM、GAM、SOCA注意力模块、程序

# 通道注意力机制
class ChannelAttention(nn.Module):      
    def __init__(self, in_planes, ratio=8):
        super(ChannelAttention, self).__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d(1)  # 全局平均池化
        self.max_pool = nn.AdaptiveMaxPool2d(1)  # 全局最大池化

        # 利用1x1卷积代替全连接
        self.fc1   = nn.Conv2d(in_planes, in_planes // ratio, 1, bias=False)
        self.relu1 = nn.ReLU()
        self.fc2   = nn.Conv2d(in_planes // ratio, in_planes, 1, bias=False)

        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        avg_out = self.fc2(self.relu1(self.fc1(self.avg_pool(x))))
        max_out = self.fc2(self.relu1(self.fc1(self.max_pool(x))))
        out = avg_out + max_out
        return self.sigmoid(out)
 
# 空间注意力机制
class SpatialAttention(nn.Module):
    def __init__(self, kernel_size=7):
        super(SpatialAttention, self).__init__()

        assert kernel_size in (3, 7), 'kernel size must be 3 or 7'
        padding = 3 if kernel_size == 7 else 1
        self.conv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False)
        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        avg_out = torch.mean(x, dim=1, keepdim=True)   # 每个通道上取平均值
        max_out, _ = torch.max(x, dim=1, keepdim=True) # 每个通道上取最大值
        x = torch.cat([avg_out, max_out], dim=1)
        x = self.conv1(x)
        return self.sigmoid(x)

class cbam_block(nn.Module):
    def __init__(self, channel, ratio=8, kernel_size=7):
        super(cbam_block, self).__init__()
        self.channelattention = ChannelAttention(channel, ratio=ratio)      # 通道注意力机制
        self.spatialattention = SpatialAttention(kernel_size=kernel_size)   # 空间注意力机制

    def forward(self, x):
        x = x * self.channelattention(x)
        x = x * self.spatialattention(x)
        return x

不足:
1、SE注意力中只关注构建通道之间的相互依赖关系,忽略了空间特征。
2、CBAM中引入了大尺度的卷积核提取空间特征,但忽略了长程依赖问题。

6、ShuffleAttention注意力

函数

import numpy as np
import torch
from torch import nn
from torch.nn import init
from torch.nn.parameter import Parameter

# https://arxiv.org/pdf/2102.00240.pdf
class ShuffleAttention(nn.Module):
    def __init__(self, channel=512,reduction=16,G=8):
        super().__init__()
        self.G=G
        self.channel=channel
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.gn = nn.GroupNorm(channel // (2 * G), channel // (2 * G))
        self.cweight = Parameter(torch.zeros(1, channel // (2 * G), 1, 1))
        self.cbias = Parameter(torch.ones(1, channel // (2 * G), 1, 1))
        self.sweight = Parameter(torch.zeros(1, channel // (2 * G), 1, 1))
        self.sbias = Parameter(torch.ones(1, channel // (2 * G), 1, 1))
        self.sigmoid=nn.Sigmoid()
        
    def init_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                init.kaiming_normal_(m.weight, mode='fan_out')
                if m.bias is not None:
                    init.constant_(m.bias, 0)
            elif isinstance(m, nn.BatchNorm2d):
                init.constant_(m.weight, 1)
                init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):
                init.normal_(m.weight, std=0.001)
                if m.bias is not None:
                    init.constant_(m.bias, 0)

    
    def channel_shuffle(x, groups):
        b, c, h, w = x.shape
        x = x.reshape(b, groups, -1, h, w)
        x = x.permute(0, 2, 1, 3, 4)

        # flatten
        x = x.reshape(b, -1, h, w)
        return x
    def forward(self, x):
        b, c, h, w = x.size()
        #group into subfeatures
        x=x.view(b*self.G,-1,h,w) #bs*G,c//G,h,w
        
        #channel_split
        x_0,x_1=x.chunk(2,dim=1) #bs*G,c//(2*G),h,w

        #channel attention
        x_channel=self.avg_pool(x_0) #bs*G,c//(2*G),1,1
        x_channel=self.cweight*x_channel+self.cbias #bs*G,c//(2*G),1,1
        x_channel=x_0*self.sigmoid(x_channel)

        #spatial attention
        x_spatial=self.gn(x_1) #bs*G,c//(2*G),h,w
        x_spatial=self.sweight*x_spatial+self.sbias #bs*G,c//(2*G),h,w
        x_spatial=x_1*self.sigmoid(x_spatial) #bs*G,c//(2*G),h,w

        # concatenate along channel axis
        out=torch.cat([x_channel,x_spatial],dim=1)  #bs*G,c//G,h,w
        out=out.contiguous().view(b,-1,h,w)

        # channel shuffle
        out = self.channel_shuffle(out, 2)
        return out

目标检测——SE、ECA、CA、SA、CBAM、ShuffleAttention、SimAM、CrissCrossAttention、SK、NAM、GAM、SOCA注意力模块、程序
调用

self.ShuffleAttention = ShuffleAttention(channel=512,reduction=16,G=8)

这里batch_size=8,模型设置batch_size不一样通道数会报错。
可以根据图片改一下这里的通道数也就是(channel // (2 * G),让他等于函数中forward里的x_channel就可以了。

self.gn = nn.GroupNorm(channel // (2 * G), channel // (2 * G))
self.cweight = Parameter(torch.zeros(1, channel // (2 * G), 1, 1))
self.cbias = Parameter(torch.ones(1, channel // (2 * G), 1, 1))
self.sbias = Parameter(torch.ones(1, channel // (2 * G), 1, 1))

7、SimAM注意力

目标检测——SE、ECA、CA、SA、CBAM、ShuffleAttention、SimAM、CrissCrossAttention、SK、NAM、GAM、SOCA注意力模块、程序

函数

class SimAM(torch.nn.Module):
    def __init__(self, channels = None,out_channels = None, e_lambda = 1e-4):
        super(SimAM, self).__init__()
 
        self.activaton = nn.Sigmoid()
        self.e_lambda = e_lambda
 
    def forward(self, x):
 
        b, c, h, w = x.size()
        
        n = w * h - 1
 
        x_minus_mu_square = (x - x.mean(dim=[2,3], keepdim=True)).pow(2)
        y = x_minus_mu_square / (4 * (x_minus_mu_square.sum(dim=[2,3], keepdim=True) / n + self.e_lambda)) + 0.5
 
        return x * self.activaton(y)  

调用

self.SimAM = SimAM(512,512)

8、CrissCrossAttention注意力

函数

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import Softmax

def INF(B,H,W):
     return -torch.diag(torch.tensor(float("inf")).repeat(H),0).unsqueeze(0).repeat(B*W,1,1)


class CrissCrossAttention(nn.Module):
    """ Criss-Cross Attention Module"""
    def __init__(self, in_dim):
        super(CrissCrossAttention,self).__init__()
        self.query_conv = nn.Conv2d(in_channels=in_dim, out_channels=in_dim//8, kernel_size=1)
        self.key_conv = nn.Conv2d(in_channels=in_dim, out_channels=in_dim//8, kernel_size=1)
        self.value_conv = nn.Conv2d(in_channels=in_dim, out_channels=in_dim, kernel_size=1)
        self.softmax = Softmax(dim=3)
        self.INF = INF
        self.gamma = nn.Parameter(torch.zeros(1))


    def forward(self, x):
        m_batchsize, _, height, width = x.size()
        proj_query = self.query_conv(x)
        proj_query_H = proj_query.permute(0,3,1,2).contiguous().view(m_batchsize*width,-1,height).permute(0, 2, 1)
        proj_query_W = proj_query.permute(0,2,1,3).contiguous().view(m_batchsize*height,-1,width).permute(0, 2, 1)
        proj_key = self.key_conv(x)
        proj_key_H = proj_key.permute(0,3,1,2).contiguous().view(m_batchsize*width,-1,height)
        proj_key_W = proj_key.permute(0,2,1,3).contiguous().view(m_batchsize*height,-1,width)
        proj_value = self.value_conv(x)
        proj_value_H = proj_value.permute(0,3,1,2).contiguous().view(m_batchsize*width,-1,height)
        proj_value_W = proj_value.permute(0,2,1,3).contiguous().view(m_batchsize*height,-1,width)
        energy_H = (torch.bmm(proj_query_H, proj_key_H)+self.INF(m_batchsize, height, width)).view(m_batchsize,width,height,height).permute(0,2,1,3)
        energy_W = torch.bmm(proj_query_W, proj_key_W).view(m_batchsize,height,width,width)
        concate = self.softmax(torch.cat([energy_H, energy_W], 3))

        att_H = concate[:,:,:,0:height].permute(0,2,1,3).contiguous().view(m_batchsize*width,height,height)
        #print(concate)
        #print(att_H) 
        att_W = concate[:,:,:,height:height+width].contiguous().view(m_batchsize*height,width,width)
        out_H = torch.bmm(proj_value_H, att_H.permute(0, 2, 1)).view(m_batchsize,width,-1,height).permute(0,2,3,1)
        out_W = torch.bmm(proj_value_W, att_W.permute(0, 2, 1)).view(m_batchsize,height,-1,width).permute(0,2,1,3)
        #print(out_H.size(),out_W.size())
        return self.gamma*(out_H + out_W) + x

目标检测——SE、ECA、CA、SA、CBAM、ShuffleAttention、SimAM、CrissCrossAttention、SK、NAM、GAM、SOCA注意力模块、程序

调用

self.CrissCrossAttention = CrissCrossAttention(1024)

这里需要注意def init(self, in_dim):函数里 定义的通道数,跟batch_size的大小有关,不一样需要改一下,就是下面这几行。

self.query_conv = nn.Conv2d(in_channels=in_dim, out_channels=in_dim//8, kernel_size=1)
        self.key_conv = nn.Conv2d(in_channels=in_dim, out_channels=in_dim//8, kernel_size=1)
        self.value_conv = nn.Conv2d(in_channels=in_dim, out_channels=in_dim, kernel_size=1)

9、SKAttention注意力

目标检测——SE、ECA、CA、SA、CBAM、ShuffleAttention、SimAM、CrissCrossAttention、SK、NAM、GAM、SOCA注意力模块、程序

函数

from collections import OrderedDict

class SKAttention(nn.Module):

    def __init__(self, channel=512, kernels=[1, 3, 5, 7], reduction=16, group=1, L=32):
        super().__init__()
        self.d = max(L, channel // reduction)
        self.convs = nn.ModuleList([])
        for k in kernels:
            self.convs.append(
                nn.Sequential(OrderedDict([
                    ('conv', nn.Conv2d(channel, channel, kernel_size=k, padding=k // 2, groups=group)),
                    ('bn', nn.BatchNorm2d(channel)),
                    ('relu', nn.ReLU())
                ]))
            )
        self.fc = nn.Linear(channel, self.d)
        self.fcs = nn.ModuleList([])
        for i in range(len(kernels)):
            self.fcs.append(nn.Linear(self.d, channel))
        self.softmax = nn.Softmax(dim=0)

    def forward(self, x):
        bs, c, _, _ = x.size()
        conv_outs = []
        ### split
        for conv in self.convs:
            conv_outs.append(conv(x))
        feats = torch.stack(conv_outs, 0)  # k,bs,channel,h,w

        ### fuse
        U = sum(conv_outs)  # bs,c,h,w

        ### reduction channel
        S = U.mean(-1).mean(-1)  # bs,c
        Z = self.fc(S)  # bs,d

        ### calculate attention weight
        weights = []
        for fc in self.fcs:
            weight = fc(Z)
            weights.append(weight.view(bs, c, 1, 1))  # bs,channel
        attention_weughts = torch.stack(weights, 0)  # k,bs,channel,1,1
        attention_weughts = self.softmax(attention_weughts)  # k,bs,channel,1,1

        ### fuse
        V = (attention_weughts * feats).sum(0)
        return V

调用

self.SKAttention = SKAttention(1024)

10、S2-MLPv2注意力

目标检测——SE、ECA、CA、SA、CBAM、ShuffleAttention、SimAM、CrissCrossAttention、SK、NAM、GAM、SOCA注意力模块、程序

函数

def spatial_shift1(x):
    b,w,h,c = x.size()
    x[:,1:,:,:c//4] = x[:,:w-1,:,:c//4]
    x[:,:w-1,:,c//4:c//2] = x[:,1:,:,c//4:c//2]
    x[:,:,1:,c//2:c*3//4] = x[:,:,:h-1,c//2:c*3//4]
    x[:,:,:h-1,3*c//4:] = x[:,:,1:,3*c//4:]
    return x
def spatial_shift2(x):
    b,w,h,c = x.size()
    x[:,:,1:,:c//4] = x[:,:,:h-1,:c//4]
    x[:,:,:h-1,c//4:c//2] = x[:,:,1:,c//4:c//2]
    x[:,1:,:,c//2:c*3//4] = x[:,:w-1,:,c//2:c*3//4]
    x[:,:w-1,:,3*c//4:] = x[:,1:,:,3*c//4:]
    return x
class SplitAttention(nn.Module):
    def __init__(self,channel=512,k=3):
        super().__init__()
        self.channel=channel
        self.k=k
        self.mlp1=nn.Linear(channel,channel,bias=False)
        self.gelu=nn.GELU()
        self.mlp2=nn.Linear(channel,channel*k,bias=False)
        self.softmax=nn.Softmax(1)
    
    def forward(self,x_all):
        b,k,h,w,c=x_all.shape
        x_all=x_all.reshape(b,k,-1,c) 
        a=torch.sum(torch.sum(x_all,1),1) 
        hat_a=self.mlp2(self.gelu(self.mlp1(a))) 
        hat_a=hat_a.reshape(b,self.k,c) 
        bar_a=self.softmax(hat_a) 
        attention=bar_a.unsqueeze(-2) 
        out=attention*x_all 
        out=torch.sum(out,1).reshape(b,h,w,c)
        return out

class S2Attention(nn.Module):

    def __init__(self, channels=512 ):
        super().__init__()
        self.mlp1 = nn.Linear(channels,channels*3)
        self.mlp2 = nn.Linear(channels,channels)
        self.split_attention = SplitAttention()

    def forward(self, x):
        b,c,w,h = x.size()
        x=x.permute(0,2,3,1)
        x = self.mlp1(x)
        x1 = spatial_shift1(x[:,:,:,:c])
        x2 = spatial_shift2(x[:,:,:,c:c*2])
        x3 = x[:,:,:,c*2:]
        x_all=torch.stack([x1,x2,x3],1)
        a = self.split_attention(x_all)
        x = self.mlp2(a)
        x=x.permute(0,3,1,2)
        return x

调用

self.S2Attention = S2Attention(512)

11、NAMAttention注意力

目标检测——SE、ECA、CA、SA、CBAM、ShuffleAttention、SimAM、CrissCrossAttention、SK、NAM、GAM、SOCA注意力模块、程序

函数

class Channel_Att(nn.Module):
    def __init__(self, channels, t=16):
        super(Channel_Att, self).__init__()
        self.channels = channels
        self.bn2 = nn.BatchNorm2d(self.channels, affine=True)
    def forward(self, x):
        residual = x
        x = self.bn2(x)
        weight_bn = self.bn2.weight.data.abs() / torch.sum(self.bn2.weight.data.abs())
        x = x.permute(0, 2, 3, 1).contiguous()
        x = torch.mul(weight_bn, x)
        x = x.permute(0, 3, 1, 2).contiguous()
        x = torch.sigmoid(x) * residual  #
        return x
class NAMAttention(nn.Module):
    def __init__(self, channels, out_channels=None, no_spatial=True):
        super(NAMAttention, self).__init__()
        self.Channel_Att = Channel_Att(channels)
    def forward(self, x):
        x_out1 = self.Channel_Att(x)
        return x_out1

调用

self.NAMAttention = NAMAttention(512)

12、SOCA注意力

目标检测——SE、ECA、CA、SA、CBAM、ShuffleAttention、SimAM、CrissCrossAttention、SK、NAM、GAM、SOCA注意力模块、程序
函数

from torch.autograd import Function

class Covpool(Function):
     
     def forward(ctx, input):
         x = input
         batchSize = x.data.shape[0]
         dim = x.data.shape[1]
         h = x.data.shape[2]
         w = x.data.shape[3]
         M = h*w
         x = x.reshape(batchSize,dim,M)
         I_hat = (-1./M/M)*torch.ones(M,M,device = x.device) + (1./M)*torch.eye(M,M,device = x.device)
         I_hat = I_hat.view(1,M,M).repeat(batchSize,1,1).type(x.dtype)
         y = x.bmm(I_hat).bmm(x.transpose(1,2))
         ctx.save_for_backward(input,I_hat)
         return y
     
     def backward(ctx, grad_output):
         input,I_hat = ctx.saved_tensors
         x = input
         batchSize = x.data.shape[0]
         dim = x.data.shape[1]
         h = x.data.shape[2]
         w = x.data.shape[3]
         M = h*w
         x = x.reshape(batchSize,dim,M)
         grad_input = grad_output + grad_output.transpose(1,2)
         grad_input = grad_input.bmm(x).bmm(I_hat)
         grad_input = grad_input.reshape(batchSize,dim,h,w)
         return grad_input

class Sqrtm(Function):
     
     def forward(ctx, input, iterN):
         x = input
         batchSize = x.data.shape[0]
         dim = x.data.shape[1]
         dtype = x.dtype
         I3 = 3.0*torch.eye(dim,dim,device = x.device).view(1, dim, dim).repeat(batchSize,1,1).type(dtype)
         normA = (1.0/3.0)*x.mul(I3).sum(dim=1).sum(dim=1)
         A = x.div(normA.view(batchSize,1,1).expand_as(x))
         Y = torch.zeros(batchSize, iterN, dim, dim, requires_grad = False, device = x.device)
         Z = torch.eye(dim,dim,device = x.device).view(1,dim,dim).repeat(batchSize,iterN,1,1)
         if iterN < 2:
            ZY = 0.5*(I3 - A)
            Y[:,0,:,:] = A.bmm(ZY)
         else:
            ZY = 0.5*(I3 - A)
            Y[:,0,:,:] = A.bmm(ZY)
            Z[:,0,:,:] = ZY
            for i in range(1, iterN-1):
               ZY = 0.5*(I3 - Z[:,i-1,:,:].bmm(Y[:,i-1,:,:]))
               Y[:,i,:,:] = Y[:,i-1,:,:].bmm(ZY)
               Z[:,i,:,:] = ZY.bmm(Z[:,i-1,:,:])
            ZY = 0.5*Y[:,iterN-2,:,:].bmm(I3 - Z[:,iterN-2,:,:].bmm(Y[:,iterN-2,:,:]))
         y = ZY*torch.sqrt(normA).view(batchSize, 1, 1).expand_as(x)
         ctx.save_for_backward(input, A, ZY, normA, Y, Z)
         ctx.iterN = iterN
         return y
     
     def backward(ctx, grad_output):
         input, A, ZY, normA, Y, Z = ctx.saved_tensors
         iterN = ctx.iterN
         x = input
         batchSize = x.data.shape[0]
         dim = x.data.shape[1]
         dtype = x.dtype
         der_postCom = grad_output*torch.sqrt(normA).view(batchSize, 1, 1).expand_as(x)
         der_postComAux = (grad_output*ZY).sum(dim=1).sum(dim=1).div(2*torch.sqrt(normA))
         I3 = 3.0*torch.eye(dim,dim,device = x.device).view(1, dim, dim).repeat(batchSize,1,1).type(dtype)
         if iterN < 2:
            der_NSiter = 0.5*(der_postCom.bmm(I3 - A) - A.bmm(der_sacleTrace))
         else:
            dldY = 0.5*(der_postCom.bmm(I3 - Y[:,iterN-2,:,:].bmm(Z[:,iterN-2,:,:])) -
                          Z[:,iterN-2,:,:].bmm(Y[:,iterN-2,:,:]).bmm(der_postCom))
            dldZ = -0.5*Y[:,iterN-2,:,:].bmm(der_postCom).bmm(Y[:,iterN-2,:,:])
            for i in range(iterN-3, -1, -1):
               YZ = I3 - Y[:,i,:,:].bmm(Z[:,i,:,:])
               ZY = Z[:,i,:,:].bmm(Y[:,i,:,:])
               dldY_ = 0.5*(dldY.bmm(YZ) - 
                         Z[:,i,:,:].bmm(dldZ).bmm(Z[:,i,:,:]) - 
                             ZY.bmm(dldY))
               dldZ_ = 0.5*(YZ.bmm(dldZ) - 
                         Y[:,i,:,:].bmm(dldY).bmm(Y[:,i,:,:]) -
                            dldZ.bmm(ZY))
               dldY = dldY_
               dldZ = dldZ_
            der_NSiter = 0.5*(dldY.bmm(I3 - A) - dldZ - A.bmm(dldY))
         grad_input = der_NSiter.div(normA.view(batchSize,1,1).expand_as(x))
         grad_aux = der_NSiter.mul(x).sum(dim=1).sum(dim=1)
         for i in range(batchSize):
             grad_input[i,:,:] += (der_postComAux[i] \
                                   - grad_aux[i] / (normA[i] * normA[i])) \
                                   *torch.ones(dim,device = x.device).diag()
         return grad_input, None
def CovpoolLayer(var):
    return Covpool.apply(var)
def SqrtmLayer(var, iterN):
    return Sqrtm.apply(var, iterN)
class SOCA(nn.Module):
    # second-order Channel attention
    def __init__(self, channel, reduction=8):
        super(SOCA, self).__init__()
        self.max_pool = nn.MaxPool2d(kernel_size=2)

        self.conv_du = nn.Sequential(
            nn.Conv2d(channel, channel // reduction, 1, padding=0, bias=True),
            nn.ReLU(inplace=True),
            nn.Conv2d(channel // reduction, channel, 1, padding=0, bias=True),
            nn.Sigmoid()
        )

    def forward(self, x):
        batch_size, C, h, w = x.shape  # x: NxCxHxW
        N = int(h * w)
        min_h = min(h, w)
        h1 = 1000
        w1 = 1000
        if h < h1 and w < w1:
            x_sub = x
        elif h < h1 and w > w1:
            W = (w - w1) // 2
            x_sub = x[:, :, :, W:(W + w1)]
        elif w < w1 and h > h1:
            H = (h - h1) // 2
            x_sub = x[:, :, H:H + h1, :]
        else:
            H = (h - h1) // 2
            W = (w - w1) // 2
            x_sub = x[:, :, H:(H + h1), W:(W + w1)]
        cov_mat = CovpoolLayer(x_sub) # Global Covariance pooling layer
        cov_mat_sqrt = SqrtmLayer(cov_mat,5) # Matrix square root layer( including pre-norm,Newton-Schulz iter. and post-com. with 5 iteration)
        cov_mat_sum = torch.mean(cov_mat_sqrt,1)
        cov_mat_sum = cov_mat_sum.view(batch_size,C,1,1)
        y_cov = self.conv_du(cov_mat_sum)
        return y_cov*x

调用

self.SOCA = SOCA(512)

13、GAMAttention注意力

目标检测——SE、ECA、CA、SA、CBAM、ShuffleAttention、SimAM、CrissCrossAttention、SK、NAM、GAM、SOCA注意力模块、程序

函数

class GAMAttention(nn.Module):
    def __init__(self, c1, c2, group=True, rate=4):
        super(GAMAttention, self).__init__()

        self.channel_attention = nn.Sequential(
            nn.Linear(c1, int(c1 / rate)),
            nn.ReLU(inplace=True),
            nn.Linear(int(c1 / rate), c1)
        )
        self.spatial_attention = nn.Sequential(
            nn.Conv2d(c1, c1 // rate, kernel_size=7, padding=3, groups=rate) if group else nn.Conv2d(c1, int(c1 / rate),
                                                                                                     kernel_size=7,
                                                                                                     padding=3),
            nn.BatchNorm2d(int(c1 / rate)),
            nn.ReLU(inplace=True),
            nn.Conv2d(c1 // rate, c2, kernel_size=7, padding=3, groups=rate) if group else nn.Conv2d(int(c1 / rate), c2,
                                                                                                     kernel_size=7,
                                                                                                     padding=3),
            nn.BatchNorm2d(c2)
        )

    def forward(self, x):
        b, c, h, w = x.shape
        x_permute = x.permute(0, 2, 3, 1).view(b, -1, c)
        x_att_permute = self.channel_attention(x_permute).view(b, h, w, c)
        x_channel_att = x_att_permute.permute(0, 3, 1, 2)
        x = x * x_channel_att

        x_spatial_att = self.spatial_attention(x).sigmoid()
        x_spatial_att = channel_shuffle(x_spatial_att, 4)  # last shuffle
        out = x * x_spatial_att
        return out


def channel_shuffle(x, groups=2):
    B, C, H, W = x.size()
    out = x.view(B, groups, C // groups, H, W).permute(0, 2, 1, 3, 4).contiguous()
    out = out.view(B, C, H, W)
    return out

调用

self.GAMAttention = GAMAttention(512,512)

总结

做个小笔记,,,文章来源地址https://www.toymoban.com/news/detail-471048.html

到了这里,关于目标检测——SE、ECA、CA、SA、CBAM、ShuffleAttention、SimAM、CrissCrossAttention、SK、NAM、GAM、SOCA注意力模块、程序的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • YOLOv5:添加SE、CBAM、CoordAtt、ECA注意力机制

    记录在YOLOv5添加注意力机制,方便自己查阅。 由于本人水平有限,难免出现错漏,敬请批评改正。 更多精彩内容,可点击进入YOLO系列专栏或我的个人主页查看 YOLOv5:IoU、GIoU、DIoU、CIoU、EIoU https://blog.csdn.net/FriendshipTang/article/details/129969044 YOLOv7训练自己的数据集(口罩检测)

    2024年02月03日
    浏览(44)
  • 注意力机制(SE, ECA, CBAM, SKNet, scSE, Non-Local, GCNet, ASFF) Pytorch代码

    2023.3.2新增SKNet代码 2023.3.10 新增 scSE代码 2023.3.11 新增 Non-Local Net 非局部神经网络 2023.3.13新增GCNet 2023.6.7新增ASFF SE注意力机制(Squeeze-and-Excitation Networks) :是一种 通道类型 的注意力机制,就是在通道维度上增加注意力机制,主要内容是是 squeeze 和 excitation . 就是使用另外一个

    2024年02月08日
    浏览(48)
  • Yolov8改进---注意力机制: SimAM(无参Attention)和NAM(基于标准化的注意力模块),效果秒杀CBAM、SE

    论文: http://proceedings.mlr.press/v139/yang21o/yang21o.pdf         SimAM(Simple Attenti

    2024年02月09日
    浏览(41)
  • 优化改进YOLOv5算法之添加SE、CBAM、CA模块(超详细)

    目录 1 SENet 1.1 SENet原理 1.2 SENet代码(Pytorch) 1.3 YOLOv5中加入SE模块  1.3.1 common.py配置 1.3.2 yolo.py配置 1.3.3 创建添加RepVGG模块的YOLOv5的yaml配置文件 2 CBAM 2.1 CBAM原理 2.2 CBAM代码(Pytorch) 2.3 YOLOv5中加入CBAM模块  2.3.1 common.py配置 2.3.2 yolo.py配置 2.3.3 创建添加CBAM模块的YOLOv5的yaml配

    2024年04月17日
    浏览(39)
  • SE、CBAM、ECA注意力机制(网络结构详解+详细注释代码+核心思想讲解+注意力机制优化神经网络方法)——pytorch实现

           这期博客我们来学习一下神秘已久的注意力机制,刚开始接触注意力机制的时候,感觉很有意思,事实上学会之后会发现比想象中的要简单,复杂的注意力机制后续会讲解,这期博客先讲解最常见的三种SE、CBAM、ECA注意力机制。        注意力机制更详细的可以被称

    2024年02月07日
    浏览(49)
  • Pytorch图像处理注意力机制SENet CBAM ECA模块解读

    目录 1. 注意力机制 1.1 SENet(Squeeze-and-Excitation Network) 1.1.1 SENet原理  1.1.2  SENet代码示例 1.2 CBAM(Convolutional Block Attention Module) 1.2.1 CBAM原理  1.2.2 CBAM代码示例 1.3 ECA(Efficient Channel Attention) 1.3.1 ECA原理  1.3.2 ECA代码示例   注意力机制 最初是为了解决自然语言处理(NLP)任

    2024年02月15日
    浏览(48)
  • YOLOv8/v7/v5全网首发独家创新,内涵CBAM注意力改进、ECA改进,SPPF改进等

    💡💡💡 全网独家首发创新(原创),纯自研模块,适合paper !!! 💡💡💡 内涵CBAM注意力改进、ECA改进,SPPF改进等!!! 重新设计全局平均池化层和全局最大池化层,增强全局视角信息和不同尺度大小的特征 分析SPPF的问题点,只关注边缘信息而忽略背景信息 如何改进

    2024年01月23日
    浏览(67)
  • 【目标检测】yolov5改进系列:主干网络中添加SE注意力机制网络

    写在前面: 首先感谢兄弟们的关注和订阅,让我有创作的动力,在创作过程我会尽最大能力,保证作品的质量,如果有问题,可以私信我,让我们携手共进,共创辉煌。 CNN网络中,图像或者说特征图Feature Map的特征主要分为空间特征(Spatial)和通道(Channel)特征。对于空间

    2023年04月16日
    浏览(50)
  • 【SAR雷达】基于FFT和CA-CFAR的雷达信号仿真与目标检测附matlab代码

     ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。 🍎个人主页:Matlab科研工作室 🍊个人信条:格物致知。 更多Matlab完整代码及仿真定制内容点击👇 智能优化算法       神经网络预测       雷达通信       无

    2024年03月19日
    浏览(50)
  • Yolov8改进---注意力机制:CoTAttention,效果秒杀CBAM、SE

     论文:https://arxiv.org/pdf/2107.12292.pdf          CoTAttention网络是一种用于多模态场景下的视觉问答(Visual Question Answering,VQA)任务的神经网络模型。它是在经典的注意力机制(Attention Mechanism)上进行了改进,能够自适应地对不同的视觉和语言输入进行注意力分配,从而更

    2024年02月03日
    浏览(46)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包