【Java高阶数据结构】图-图的表示与遍历

这篇具有很好参考价值的文章主要介绍了【Java高阶数据结构】图-图的表示与遍历。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

高阶数据结构!

【Java高阶数据结构】图-图的表示与遍历

Java高阶数据结构 & 图的概念 & 图的存储与遍历

1. 图的基本概念

1.1 图的属性

图是由顶点集合及顶点间的关系组成的一种数据结构:

G = (VE)

Graph图,vertex顶点, edge边

  • 其中: 顶点集合V = {x|x属于某个数据对象集}是有穷非空集合;

  • E = {(x,y)|x,y属于V}或者E = {|x,y属于V && Path(x, y)},是顶点间关系的有穷集合,也叫做边的集合。

    • (x, y)表示x到y的一条双向通路,即边(x, y)是无方向的;
    • Path表示从x到y的一条单向通路,即Path(x, y)是有方向的。

顶点和边:

  • 图中结点称为顶点
    • 第i个顶点记作vi。
  • 两个顶点vi和vj相关联称作顶点vi和顶点vj之间有一条边
    • 图中的第k条边记作ek,ek = 无向边(vi,vj)或有向边Path(vi,vj)

1.2 无向图与有向图

  1. 有向图中,顶点对是有序的,顶点对称为顶点x到顶点y的一条边(弧),Path(x, y)和Path(y, x)是两条不同的边,比如下图G3和G4为有向图。
  2. 无向图中,顶点对(x, y)是无序的,顶点对(x,y) 称为顶点x和顶点y相关联的一条边,这条边没有特定方向,Path(x, y)和Path(y, x)是同一条边,比如下图G1和G2为 无向图。

注意:无向边(x, y)等于有向边Path(x, y)和Path(y, x)

【Java高阶数据结构】图-图的表示与遍历

1.3 完全图

在有n个顶点的

  1. 无向图中,n(n - 1) / 2 条边
    • 任何两个顶点都有且仅有一条边
      • 根据排列组合原理,第一个顶点可连接n - 1个顶点,第二个顶点可以连接 n - 2 个顶点······
      • 第n个顶点可连接0个顶点,总和n(n - 1) / 2
    • 【------】
    • 无向完全图,如G1
  2. 有向图中,n(n - 1)条边
    • 任何两个顶点都有且仅有两条方向相反的边
      • n(n - 1) / 2 * 2 = n(n - 1)
    • 【<==>】
    • 有向完全图,如G4

1.4 简单路径和回路

简单路径:路径上的顶点(V1,V2······)均不重复

回路:若路径上的第一个顶点与最后一个顶点重合,即成环回路

【Java高阶数据结构】图-图的表示与遍历

1.5 子图

即图G集合的子集G1 = {V1,E1},则称G1为G的子图

  1. V1包含于V
  2. E1包含于E

【Java高阶数据结构】图-图的表示与遍历

1.6 连通图

无向图中,V1到V2有路径,则称V1和V2连通

  • 如果每对顶点都是连通的,则称此图为连通图

如果此图为有向图,并且每一对顶点Vi到Vj与Vj到Vi都连通,则称为强连通图

完全图就是更加强大的连通图~

【Java高阶数据结构】图-图的表示与遍历

生成树在求最小生成树篇章讲解

2. 图的存储(理论)

2.1 ※邻接矩阵

如果一个图,有n个顶点(V0 ··· Vn-1)

  • 每个顶点都有对应的下标(0 ··· n - 1)

那么邻接矩阵就是个n×n的矩阵

  • 如果顶点Vi到Vj有一条有向边 ---->
    • 直接相连
  • 那么这个矩阵(二维数组)的的i行第j列的元素置为对应的距离(权值)
    • 带权图(不带权图默认为1)
    • 默认值为 ∞(无穷大)

【Java高阶数据结构】图-图的表示与遍历

  • 无向图的一条边是双向的
  • 自己到自己可以是0也可以是默认值∞,最好是∞,这样后面好判断

无向图的邻接矩阵是关于对角线对称的:

【Java高阶数据结构】图-图的表示与遍历

有向图则不一定:

【Java高阶数据结构】图-图的表示与遍历

带权图:

【Java高阶数据结构】图-图的表示与遍历

2.2 邻接链表

邻接表:

  1. 用数组表示顶点的集合
  2. 用链表来表示边的关系

【Java高阶数据结构】图-图的表示与遍历

解析:

  1. A可以到B和C,则A对应的链表存放两个节点 【1->2->null】
  2. B可以到A和D,则B对应的链表存放两个节点 【0->3->null】
  3. C可以到A,则C对应的链表存放一个节点 【0->null】
  4. D可以到B,则D对应的链表存放一个节点 【1->null】

如果是有向图的邻接表,则分为两种

  1. 入边表
  2. 出边表

【Java高阶数据结构】图-图的表示与遍历

  • 那么所有的链表的节点和就是边数
  • 因为一条有向边必然是一个顶点的“出”,另一个顶点的“入”

3. 图的存储(代码表示)

3.1 邻接矩阵

3.1.1 邻接矩阵的基本属性
public class GraphByMatrix{

    // 1. 顶点集合
    private char[] arrayV;

    //2. 邻接矩阵
    private int[][] matrix;//顶点在这里的下标即在字符数组的下标

    //3. 是否是有向图
    private boolean isDirect;
    
}
3.1.2 构造方法和初始化方法
/**
 *
 * @param size 【顶点个数】
 * @param isDirect
 */
public GraphByMatrix(int size, boolean isDirect) {
    this.arrayV = new char[size];
    matrix = new int[size][size];//此时默认都是0
    this.isDirect = isDirect;

    //将邻接矩阵默认值改为【∞】
    for (int i = 0; i < size; i++) {
        Arrays.fill(matrix[i], Integer.MAX_VALUE);
        //fill,让数组充满【∞】这个值
    }
}
public void initArrayV(char[] array) {
    for (int i = 0; i < array.length; i++) {
        arrayV[i] = array[i];
    }
}
  1. 构造方法
    • 传入size,即顶点的个数 ==> arrayV的大小
    • 传入isDirect,即确认是有向图或者无向图
    • 将邻接矩阵的默认值改为无穷大
  2. 初始化顶点集合
    • 传入字符数组,挨个赋值

测试:

public static void main(String[] args) {
    char[] chars = {'A', 'B', 'C', 'D'};

    GraphByMatrix graph = new GraphByMatrix(chars.length, true);
    graph.initArrayV(chars);
    System.out.println();

}

【Java高阶数据结构】图-图的表示与遍历

3.1.3 获取顶点字符在顶点集合中的下标

这个方法获得的下标,也代表该顶点在邻接矩阵的下标

  • 可以用哈希表去存储顶点们,这里不是~
  • 所以我用的是遍历数组的方法
//获得顶点对应下标
public int getIndexOfV(char v) {
    for (int i = 0; i < arrayV.length; i++) {
        if(v == arrayV[i]) {
            return i;
        }
    }
    return -1;
}
3.1.4 增加边
  1. 参数左指向参数右的有向边
  2. 如果是无向图,默认参数右也指向参数左
/**
 * 添加边
 * @param v1 起始顶点
 * @param v2 目的顶点
 * @param weight 权值
 */
public void addEdge(char v1, char v2, int weight) {
    int index1 = getIndexOfV(v1);
    int index2 = getIndexOfV(v2);
    if(index1 != -1 && index2 != -1 && index1 != index2) {
        matrix[index1][index2] = weight;
        //index1 --> index2
        if(!isDirect) {//无向图
            matrix[index2][index1] = weight;
        }
    }
}

测试:

    public static void main(String[] args) {
        char[] chars = {'A', 'B', 'C', 'D'};

        GraphByMatrix graph = new GraphByMatrix(chars.length, true);
        graph.initArrayV(chars);

        graph.addEdge('A', 'B', 1);
        graph.addEdge('A', 'D', 1);
        graph.addEdge('B', 'A', 1);
        graph.addEdge('B', 'C', 1);
        graph.addEdge('C', 'B', 1);
        graph.addEdge('C', 'D', 1);
        graph.addEdge('D', 'A', 1);
        graph.addEdge('D', 'C', 1);
        System.out.println();

    }
}

【Java高阶数据结构】图-图的表示与遍历

对比:

【Java高阶数据结构】图-图的表示与遍历

3.1.5 打印邻接矩阵
//打印邻接矩阵
public void printGraph() {
    System.out.print("   ");
    for (int i = 0; i < arrayV.length; i++) {
        System.out.print("[" + arrayV[i] + "]");
    }
    System.out.println();
    for (int i = 0; i < matrix.length; i++) {
        System.out.print("[" + arrayV[i] + "]");
        for (int j = 0; j < matrix[0].length; j++) {
            if(matrix[i][j] == Integer.MAX_VALUE) {
                System.out.print(" ∞ ");
            }else {
                System.out.print(" " + matrix[i][j] + " ");
            }
        }
        System.out.println();
    }
}

测试:

graph.printGraph();

【Java高阶数据结构】图-图的表示与遍历

3.1.6 获得顶点的度

什么是顶点的度?

  1. 有向图,入顶点和出顶点的边数和
  2. 无向图,与顶点相连的边的数量

则对于无向图,只需要遍历一行就行,但是对于有向图,还需要遍历对应列

//获得顶点的度
public int getDevOfV(char v) {
    int indexV = getIndexOfV(v);
    int count = 0;
    //无论如何,都要遍历对于行
    for (int i = 0; i < matrix[0].length; i++) {
        if(matrix[indexV][i] != Integer.MAX_VALUE) {
            count++;
        }
    }
    //如果是有向图,则遍历对于列
    if(isDirect) {
        for (int i = 0; i < matrix.length; i++) {
            if(matrix[i][indexV] != Integer.MAX_VALUE) {
                count++;
            }
        }
    }
    return count;
}

测试:

if(graph.isDirect) {
    System.out.println("有向图:");
}else {
    System.out.println("无向图:");
}
System.out.println("A节点的度:" + graph.getDevOfV('A'));
System.out.println("B节点的度:" + graph.getDevOfV('B'));
System.out.println("C节点的度:" + graph.getDevOfV('C'));
System.out.println("D节点的度:" + graph.getDevOfV('D'));

【Java高阶数据结构】图-图的表示与遍历

3.2 邻接链表

3.2.1 邻接链表的基本属性
public class GraphByList {

    static class Node {
        public int src;//起始下标
        public int dest;//目的下标
        public int weigh;//权值
        public Node next;//后继

        public Node(int src, int dest, int weigh) {
            this.src = src;
            this.dest = dest;
            this.weigh = weigh;
        }
    }

    public char[] arrayV;//顶点集合
    public ArrayList<Node> edgeList;//边的集合
    public boolean isDirect;//是否是有向图
}
  1. 定义内部类节点Node
  2. 顶点集合arrayV
  3. 边集合edgeList
    • 也可以用数组
  4. 标识符isDirect去区分有向图和无向图

如果是

  • 出边邻接表,边集合中第i条链表上的节点的src成员都是i值
  • 入边邻接表,边集合中第i条链表上的节点的dest成员都是i值
3.2.2 构造方法和初始化方法
public GraphByList(int size, boolean isDirect) {
    this.arrayV = new char[size];
    edgeList = new ArrayList<>(size);
    //不带参数的话,默认大小为0
    //并且,这只是他的容量是size
    for (int i = 0; i < size; i++) {
        edgeList.add(null);
    }
    this.isDirect = isDirect;
}

//初始化顶点数组
public void initArrayV(char[] chars) {
    for (int i = 0; i < arrayV.length; i++) {
        arrayV[i] = chars[i];
    }
}
  1. 构造方法
    • 传入size,顶点集合和边集合的大小
    • 传入isDirect,确定有向或者无向
  2. 初始化方法
    • 对顶点集合挨个赋值
3.2.3 获取顶点字符在顶点集合的下标

这里获得的下标,就是该顶点在边集合里对应的下标

  • 依旧使用的是遍历数组的方法
//获得顶点对应下标
public int getIndexOfV(char v) {
    for (int i = 0; i < arrayV.length; i++) {
        if(v == arrayV[i]) {
            return i;
        }
    }
    return -1;
}
3.2.4 添加边
  1. 参数左指向参数右的有向边
    • 这是出边表,入边表相反,本文章只写出边表
  2. 如果是无向图,默认参数右也指向参数左

注意:重复输入同一条有向边,一定要排除

/**
 * 添加边
 * 这里写的是【出边表】
 * 【入边表】就是倒过来
 * @param v1 起始顶点
 * @param v2 目的顶点
 * @param weight 权值
 */
public void addEdge(char v1, char v2, int weight) {
    int index1 = getIndexOfV(v1);
    int index2 = getIndexOfV(v2);
    if(index1 != -1 && index2 != -1 && index1 != index2) {
        Node cur = edgeList.get(index1);
        
        //判断是否存在此边
        while(cur != null) {
            if(cur.dest == index2) {
                System.out.println("存在此边");
                return;
            }
            cur = cur.next;
        }
        Node newOne = new Node(index1, index2, weight);
        //【index1 --> index2】
        //头插法插入节点
        newOne.next = edgeList.get(index1);
        edgeList.set(index1, newOne);

        //如果是无向图,相反的边也一并添加
        //如果是无向图,添加操作是联动的,所以上面判断不存在此边
        //此时不用判断
        if(!isDirect) {
            Node node = new Node(index2, index1, weight);
            //【index2 --> index1】
            node.next = edgeList.get(index2);
            edgeList.set(index2, node);
        }
    }

}

测试:

public static void main(String[] args) {
    char[] chars = {'A', 'B', 'C', 'D'};

    GraphByList graph = new GraphByList(chars.length, true);
    graph.initArrayV(chars);
    graph.addEdge('A', 'B', 1);
    graph.addEdge('A', 'D', 1);
    graph.addEdge('B', 'A', 1);
    graph.addEdge('B', 'C', 1);
    graph.addEdge('C', 'B', 1);
    graph.addEdge('C', 'D', 1);
    graph.addEdge('D', 'A', 1);
    graph.addEdge('D', 'C', 1);
    System.out.println();
}

【Java高阶数据结构】图-图的表示与遍历

3.2.5 打印的邻接链表
//打印邻接表
public void printGraph() {
    for (int i = 0; i < edgeList.size(); i++) {
        Node cur = edgeList.get(i);
        while(cur != null) {
            int index1 = cur.src;
            int index2 = cur.dest;
            System.out.print("[" + arrayV[index1] + "->" + arrayV[index2] + "]");
            cur = cur.next;
        }
        System.out.println();
    }
}
  1. 获取对应下标的链表
  2. 遍历链表

测试:

graph.printGraph();

【Java高阶数据结构】图-图的表示与遍历

3.2.6 获得顶点的度
  1. 有向图,入顶点和出顶点的边数和
  2. 无向图,与顶点相连的边的数量

对应邻接链表

  1. 有向图:
    • 入边表的对应链表的长度 + 出边表对应链表的长度
    • 但是我们的表是出边表,所以要遍历其他下标的链表,获得入边的数量
  2. 无向图:
    • 对应链表的长度,就是度数~

注意:入边表和出边表只要一种就可以完整的图了,并不是入边表和出边表结合去代表!

//获得顶点的度
public int getDevOfV(char v) {
    int index = getIndexOfV(v);
    int count = 0;
    if(index != -1) {
        Node cur = edgeList.get(index);
        while(cur != null) {
            count++;
            cur = cur.next;
        }
        //如果是有向图
        if(isDirect) {
            int dest = index;
            for (int src = 0; src < edgeList.size(); src++) {
                if(src != dest) {//src == dest 肯定不存在没必要进入
                    Node cur = edgeList.get(src);
                    while(cur != null) {
                        if(cur.dest == dest) {
                            count++;
                        }
                        cur = cur.next;
                    }
                }
            }
        }
    }
    return count;
}

测试:

System.out.println("A节点的度:" + graph.getDevOfV('A'));
System.out.println("B节点的度:" + graph.getDevOfV('B'));
System.out.println("C节点的度:" + graph.getDevOfV('C'));
System.out.println("D节点的度:" + graph.getDevOfV('D'));

【Java高阶数据结构】图-图的表示与遍历

4. 图的遍历

这里只讲解邻接矩阵的遍历代码~

  • 感兴趣的同学可以去研究一下邻接表的遍历

这里用到的邻接矩阵的图对象就是上面定义的!

4.1 广度优先的遍历

  • 类似于树的层序遍历
    • 树就是特殊的图罢了
  • 优先打印此顶点直接相连的所有顶点

【Java高阶数据结构】图-图的表示与遍历

算法设计一样也是非递归,利用队列

  • 打印过的不用再打印,所以需要一个数组来标记每个顶点的是否被打印过
    • 否则会死循环

Breadth First Search,广度优先遍历

//广度优先遍历
public void bfs(char v) {
    //标记数组
    boolean[] isVisited = new boolean[arrayV.length];

    //定义一个队列
    Queue<Integer> queue = new LinkedList<>();
    //获取起始顶点的下标
    int index = getIndexOfV(v);
    if(index == -1) {
        return;
    }
    queue.offer(index);
    while(!queue.isEmpty()) {
        int top = queue.poll();
        isVisited[top] = true;
        System.out.print(arrayV[top] + " ");
        for (int i = 0; i < arrayV.length; i++) {
            if(!isVisited[i] && matrix[top][i] != Integer.MAX_VALUE) {
                queue.offer(i);
                isVisited[i] = true;//不置为true,会导致D打印两次
            }
        }
    }
}

【Java高阶数据结构】图-图的表示与遍历

可能有人用count,去计算打印了多少个顶点,打印到对应数量就出循环

  • 发现入队列的时候不置为true也能正确~
  • 这只是巧合!更复杂的图就不会这么巧了,会因为你重复打印而误判为已全部打印

测试:

graph.bfs('B');

【Java高阶数据结构】图-图的表示与遍历

4.2 深度优先的遍历

  • 类似于树的先序遍历
    • 树就是特殊的图罢了
  • 尽可能的深入到与实时顶点相连的顶点,直到实时顶点不能再深入到未打印的顶点,再回溯

【Java高阶数据结构】图-图的表示与遍历

Depth First Search,深度优先遍历

算法设计,一样可以递归也可以非递归(栈)

这里这写递归的写法~

打印过的不用再打印,所以需要一个数组来标记每个顶点的是否被打印过

  • 否则会死递归
//深度优先遍历
public void dfs(char v) {
    boolean[] isVisited = new boolean[arrayV.length];
    int src = getIndexOfV(v);
    dfsOrder(src, isVisited);
}
//递归方法
private void dfsOrder(int src, boolean[] isVisited) {
    System.out.print(arrayV[src] + " ");
    isVisited[src] = true;
    for (int i = 0; i < matrix[src].length; i++) {
        if(!isVisited[i] && matrix[src][i] != Integer.MAX_VALUE) {
            dfsOrder(i, isVisited);
        }
    }
}

用树/递归的整体化思想就能解决了,我们是类似先序遍历,先打印顶点的~

【Java高阶数据结构】图-图的表示与遍历

  • 不一样的是,这里的递归出口就是顶点无法继续深入到未打印的顶点

有人会问了,这里需要进入递归前就置为true吗,跟刚才那个一样

答:不用

  • 因为递归不像刚才那个,刚才那个打印是延时打印的,也就是说放在队列里面,慢慢按顺序打印
  • 所以
    • bfs时,会出现延时打印而重复入队的现象。
    • dfs则不一样,没有延时打印,一进递归就打印和更新,下次要进递归之前会判断该下标是否被打印过

测试:

graph.dfs('B');

【Java高阶数据结构】图-图的表示与遍历
对于非连通图的遍历,一次遍历如果不能打印所有顶点,那么只需要用别的顶点去遍历,(由于有标记的顶点不会被再次打印),直到把所有顶点打印!

  • 最坏的情况就是,所有的顶点这间一条边都没有,那么以每个顶点为起始顶点打印一次,也能打印全部顶点

文章到此结束!谢谢观看
可以叫我 小马,我可能写的不好或者有错误,但是一起加油鸭🦆

本章节讲解了图的基本知识,

后续会更新获取最小生成树和最短路径的方法的文章

敬请期待!文章来源地址https://www.toymoban.com/news/detail-471331.html


到了这里,关于【Java高阶数据结构】图-图的表示与遍历的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 数据结构 | 图的遍历

    使用邻接矩阵法存储图的信息,其中 一维矩阵 Vexs[] 存储节点信息 二维矩阵 Edges[][] 存储边的信息 一维矩阵 visited[] 记录当前节点是否被访问过,用于后面的遍历 本文所使用的图的结构如下: 对应的 Vexs[] 为:A,B,C,D,E,F(对应的数组下标从0到5) 对应的 Edges[][] 如下: 图的

    2024年02月04日
    浏览(39)
  • 数据结构--5.3图的遍历(广度优先遍历)

    广度优先遍历:         广度优先遍历(BreadthFirstSearch),又称为广度优先搜索,简称BFS。 要实现对图的广度遍历,我们可以利用队列来实现。  (参考队列)(上述为结构)

    2024年02月10日
    浏览(47)
  • 【数据结构】图的广度优先遍历

    广度优先遍历,类似于树的层次遍历,又是熟悉的队列实现。首先将第一个顶点添加到队列中,然后讲该顶点的所有邻接顶点都加入队列中,再将该顶点输出。如此重复直到遍历完整个图。 Q:队列,用于存放顶点。 front,rear:队头和队尾指针,用于入队和出队。 p:工作指针,用

    2024年02月05日
    浏览(48)
  • 【数据结构】图的定义,存储,遍历

    🎊专栏【数据结构】 🍔喜欢的诗句:更喜岷山千里雪 三军过后尽开颜。 🎆音乐分享【Dream It Possible】 大一同学小吉,欢迎并且感谢大家指出我的问题🥰 目录 🍔前言 🎁图的定义   🏳️‍🌈有向完全图 🏳️‍🌈无向完全图 🎁存储结构 🏳️‍🌈邻接矩阵  🎈代码

    2024年02月06日
    浏览(77)
  • 【数据结构】图的创建与遍历

    图(Graph)是由顶点的有穷非空集合和顶点之间边的集合组成,通常表示为:G(V,E),其中,G表示一个图,V是图G中顶点的集合,E是图G中边的集合。 线性表 :线性关系,由直接前驱和直接后继组成。 树 :层次关系,由父结点和孩子结点组成,每个结点最多有一个父结点(根

    2023年04月22日
    浏览(47)
  • 【数据结构】图的存储与遍历

    图是由顶点集合及顶点间的关系组成的一种数据结构:G = (V, E) 在有向图中,顶点对x, y是有序的,顶点对x,y称为顶点x到顶点y的一条边(弧),x, y和y, x是两条不同的边。 在无向图中,顶点对(x, y)是无序的,顶点对(x,y)称为顶点x和顶点y相关联的一条边,这条边没有特定方向,

    2024年02月22日
    浏览(44)
  • 数据结构 第六章 图——图的遍历

    在前面我们知道,树是一种非线性结构,为了方便它在计算机中的存储,对树进行遍历使它线性化。 而图同样也是一种非线性结构,但是图又是一种不同于树的多对多结构,所以在前面我们将其转换为了多个一对多的结构来描述它的存储结构。 图的遍历同树类似,也是从某

    2024年02月08日
    浏览(44)
  • 大话数据结构-图的深度优先遍历和广度优先遍历

      图的遍历分为深度优先遍历和广度优先遍历两种。   深度优先遍历(Depth First Search),也称为深度优先搜索,简称DFS,深度优先遍历,是指从某一个顶点开始,按照一定的规则,访问并记录下一个未访问顶点。对于非连通图,则是按连通分量,采用同一规则进行深度优

    2024年02月04日
    浏览(58)
  • (超详细)C++图的深度优先遍历、广度优先遍历(数据结构)

            根据下图,编写代码实现图的深度优先遍历和广度优先遍历。          按照英文字母顺序,以邻接表为存储结构,实现图的深度优先和广度优先遍历。遍历的顺序从顶点a开始。 以用户指定的结点为起点,分别输出每种遍历下的结点访问序列。   (1)从顶点a,

    2024年02月08日
    浏览(60)
  • 【数据结构】邻接矩阵和邻接图的遍历

    本篇文章开始学习数据结构的图的相关知识,涉及的基本概念还是很多的。 本文的行文思路: 学习图的基本概念 学习图的存储结构——本文主要介绍邻接矩阵和邻接表 对每种结构进行深度优先遍历和广度优先遍历 话不多说,狠活献上 等等,先别急,正式学习之前先认识几个

    2024年02月04日
    浏览(50)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包