python、pyqt5实现人脸检测、性别和年龄预测

这篇具有很好参考价值的文章主要介绍了python、pyqt5实现人脸检测、性别和年龄预测。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

python、pyqt5实现人脸检测、性别和年龄预测
摘要:这篇博文介绍基于opencv:DNN模块自带的残差网络的人脸、性别、年龄识别系统,系统程序由OpenCv, PyQt5的库实现。如图系统可通过摄像头获取实时画面并识别其中的人脸表情,也可以通过读取图片识别,本文提供完整的程序文件并详细介绍其实现过程。博文要点如下:

关于相关的网络模型部分

汇总 | OpenCV DNN模块中支持的分类网络

1. 前言

在这个人工智能成为超级大热门的时代,人脸识别已成为其中的一项研究热点,而卷积神经网络、深度信念网络和多层感知器等相关算法在人脸面识别领域的运用最为广泛。

当前深度学习发展迅速,关于表情识别IEEE上面有许多质量很高的文章,里面介绍的是利用深度神经网络实现的面部表情识别,可以学习和参考。于是自己动手做了这个项目,这里特此将前期工作作个总结,希望能给类似工作的朋友带来一点帮助。这里使用的是已有的模型——如今CNN的主流框架之opencv的的残差网络

二、实现步骤

1.预先加载三个网络模型

2.对于识别部分实现

图片识别
[ ] 读取图片并显示到pyqt页面当中
[ ] 将图片传入到网络模型中
[ ] 将模型中识别后的结果返回到页面并显示
视频识别
[ ] 打开摄像头流/加载图像
[ ] 对每一帧图片进行传送到模型中
[ ] 返回识别后的视频,显示在pyqt当中
保存图片
[ ] 将当前视频帧保存在文件目录下

1、加载模型

MODEL_MEAN_VALUES = (78.4263377603, 87.7689143744, 114.895847746)
ageList = ['(0-2)', '(4-6)', '(8-12)', '(15-20)', '(25-32)', '(38-43)', '(48-53)', '(60-100)']
genderList = ['Male', 'Female']

# Load network
ageNet = cv.dnn.readNet(ageModel, ageProto)
genderNet = cv.dnn.readNet(genderModel, genderProto)
faceNet = cv.dnn.readNet(faceModel, faceProto)

2、人脸检测

def getFaceBox(net, frame, conf_threshold=0.7):
    frameOpencvDnn = frame.copy()
    frameHeight = frameOpencvDnn.shape[0]
    frameWidth = frameOpencvDnn.shape[1]
    blob = cv.dnn.blobFromImage(frameOpencvDnn, 1.0, (300, 300), [104, 117, 123], True, False)

    net.setInput(blob)
    detections = net.forward()
    bboxes = []
    for i in range(detections.shape[2]):
        confidence = detections[0, 0, i, 2]
        if confidence > conf_threshold:
            x1 = int(detections[0, 0, i, 3] * frameWidth)
            y1 = int(detections[0, 0, i, 4] * frameHeight)
            x2 = int(detections[0, 0, i, 5] * frameWidth)
            y2 = int(detections[0, 0, i, 6] * frameHeight)
            bboxes.append([x1, y1, x2, y2])
            cv.rectangle(frameOpencvDnn, (x1, y1), (x2, y2), (0, 255, 0), int(round(frameHeight / 150)), 8)
    return frameOpencvDnn, bboxes

python、pyqt5实现人脸检测、性别和年龄预测
源码文章来源地址https://www.toymoban.com/news/detail-471462.html

到了这里,关于python、pyqt5实现人脸检测、性别和年龄预测的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 年龄性别预测2:Pytorch实现年龄性别预测和识别(含训练代码和数据)

    目录 年龄性别预测2:Pytorch实现年龄性别预测和识别(含训练代码和数据) 1.年龄性别预测和识别方法 2.年龄性别预测和识别数据集 3.人脸检测模型 4.年龄性别预测和识别模型训练 (1)项目安装 (2)准备数据 (3)年龄性别模型训练(Pytorch) (4) 可视化训练过程 (5) 年龄性

    2024年01月19日
    浏览(69)
  • 【face-api.js】前端实现,人脸捕获、表情识别、年龄性别识别、人脸比对、视频人脸追踪、摄像头人物识别

    官网看下简介,在线预览看下效果 官方的github文件拷下来 npm i face-api.js 把模型文件拷进你的项目 主要是在图片或视频元素上,盖一个相同大小的canvas 先是录入一些图片的描述信息,然后比较描述信息,判断人脸的相似度 人脸检测器有两种, SSD 和 Tiny 两种,SSD较大,Tiny用

    2024年02月11日
    浏览(64)
  • pyqt5实战-目标检测-图像处理-人脸检测之UI界面

    今天挖掘了一个很不错的界面,使用pyqt5实现,可以加载摄像头进行目标检测,也可以手动打开图片或者视频,进行检测,封装得很好。这里以人脸检测,人脸疲劳检测(检测眨眼),微笑检测三个功能为例子。 所使用的检测算法模型为MediaPipe。MediaPipe为我们日常使用的革命

    2024年02月06日
    浏览(48)
  • 竞赛保研 基于设深度学习的人脸性别年龄识别系统

    🔥 优质竞赛项目系列,今天要分享的是 基于深度学习机器视觉的人脸性别年龄识别系统 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🧿 更多资料, 项目分享: https://gitee.com/dancheng-senior/postgraduate 随着大数据与人工智能逐渐走入人们的生活,计算机视觉应用越

    2024年01月17日
    浏览(155)
  • 竞赛选题 基于深度学习的人脸性别年龄识别 - 图像识别 opencv

    🔥 优质竞赛项目系列,今天要分享的是 🚩 毕业设计 人脸性别年龄识别系统 - 图像识别 opencv 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:3分 创新点:3分 🧿 更多资料, 项目分享: https

    2024年02月07日
    浏览(61)
  • 基于Opencv的人脸&姓名&表情&年龄&种族&性别识别系统(源码&教程)

    性别识别是利用计算机视觉来辨别和分析图像中的人脸性别属性。一直以来,人脸性别识别的发展虽然很迅速但是应用范围目前并不是很广,在身份证识别上的应用是主体应用。伴随的还有视频检索和机器人视觉,它们也是应用的重要领域。所以目前针对人脸性别识别的研究

    2024年02月11日
    浏览(48)
  • 互联网加竞赛 基于设深度学习的人脸性别年龄识别系统

    🔥 优质竞赛项目系列,今天要分享的是 基于深度学习机器视觉的人脸性别年龄识别系统 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🧿 更多资料, 项目分享: https://gitee.com/dancheng-senior/postgraduate 随着大数据与人工智能逐渐走入人们的生活,计算机视觉应用越

    2024年02月22日
    浏览(74)
  • Python PyQt5 人脸识别软件

    haarcascade_frontalface_default.xml 密码:JDBC 2

    2024年02月14日
    浏览(44)
  • 计算机竞赛 基于深度学习的人脸性别年龄识别 - 图像识别 opencv

    🔥 优质竞赛项目系列,今天要分享的是 🚩 毕业设计 人脸性别年龄识别系统 - 图像识别 opencv 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:3分 创新点:3分 🧿 更多资料, 项目分享: https

    2024年02月10日
    浏览(95)
  • 基于深度学习的人脸性别年龄识别 - 图像识别 opencv 计算机竞赛

    🔥 优质竞赛项目系列,今天要分享的是 🚩 毕业设计 人脸性别年龄识别系统 - 图像识别 opencv 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:3分 创新点:3分 🧿 更多资料, 项目分享: https

    2024年02月06日
    浏览(67)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包