YOLOv5 白皮书-第Y5周:yolo.py文件解读

这篇具有很好参考价值的文章主要介绍了YOLOv5 白皮书-第Y5周:yolo.py文件解读。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

  • 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
  • 🍖 原作者:K同学啊|接辅导、项目定制
  • 🏡 我的环境:
    ● 语言环境:Python 3.8
    ● 数据集:coco128
    ● 深度学习环境:Pytorch

一、前言

本周任务:将YOLOv5s网络模型中的C3模块按照下图方式修改形成C2模块,并将C2模块插入第2层与第3层之间,且跑通YOLOv5s。
任务提示:
提示1:需要修改common.yaml、yolo.py、yolov5s.yaml文件。
提示2:C2模块与C3模块是非常相似的两个模块,我们要插入C2到模型当中,只需要找到哪里有C3模块,然后在其附近加上C2即可。
YOLOv5 白皮书-第Y5周:yolo.py文件解读
YOLOv5 白皮书-第Y5周:yolo.py文件解读
YOLOv5 白皮书-第Y5周:yolo.py文件解读

二、导入需要的包和基本配置

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
"""
YOLO-specific modules

Usage:
    $ python models/yolo.py --cfg yolov5s.yaml
"""

import argparse
import contextlib
import os
import platform
import sys
from copy import deepcopy
from pathlib import Path

FILE = Path(__file__).resolve()
ROOT = FILE.parents[1]  # YOLOv5 root directory
if str(ROOT) not in sys.path:
    sys.path.append(str(ROOT))  # add ROOT to PATH
if platform.system() != 'Windows':
    ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative

from models.common import *
from models.experimental import *
from utils.autoanchor import check_anchor_order
from utils.general import LOGGER, check_version, check_yaml, make_divisible, print_args
from utils.plots import feature_visualization
from utils.torch_utils import (fuse_conv_and_bn, initialize_weights, model_info, profile, scale_img, select_device,
                               time_sync)

try:
    import thop  # for FLOPs computation
except ImportError:
    thop = None

三、 parse_model函数

这个函数用于将模型的模块拼接起来,搭建完成的网络模型。后续如果需要动模型框架的话,你需要对这个函数做相应的改动。

def parse_model(d, ch):  # model_dict, input_channels(3)
    # Parse a YOLOv5 model.yaml dictionary
    LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10}  {'module':<40}{'arguments':<30}")
    anchors, nc, gd, gw, act = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple'], d.get('activation')
    if act:
        Conv.default_act = eval(act)  # redefine default activation, i.e. Conv.default_act = nn.SiLU()
        LOGGER.info(f"{colorstr('activation:')} {act}")  # print
    na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors  # number of anchors
    no = na * (nc + 5)  # number of outputs = anchors * (classes + 5)

    layers, save, c2 = [], [], ch[-1]  # layers, savelist, ch out
    for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']):  # from, number, module, args
        m = eval(m) if isinstance(m, str) else m  # eval strings
        for j, a in enumerate(args):
            with contextlib.suppress(NameError):
                args[j] = eval(a) if isinstance(a, str) else a  # eval strings

        n = n_ = max(round(n * gd), 1) if n > 1 else n  # depth gain
        if m in {
                Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,
                BottleneckCSP, C3, C3TR, C3SPP, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x}:
            c1, c2 = ch[f], args[0]
            if c2 != no:  # if not output
                c2 = make_divisible(c2 * gw, 8)

            args = [c1, c2, *args[1:]]
            if m in {BottleneckCSP, C3, C3TR, C3Ghost, C3x}:
                args.insert(2, n)  # number of repeats
                n = 1
        elif m is nn.BatchNorm2d:
            args = [ch[f]]
        elif m is Concat:
            c2 = sum(ch[x] for x in f)
        # TODO: channel, gw, gd
        elif m in {Detect, Segment}:
            args.append([ch[x] for x in f])
            if isinstance(args[1], int):  # number of anchors
                args[1] = [list(range(args[1] * 2))] * len(f)
            if m is Segment:
                args[3] = make_divisible(args[3] * gw, 8)
        elif m is Contract:
            c2 = ch[f] * args[0] ** 2
        elif m is Expand:
            c2 = ch[f] // args[0] ** 2
        else:
            c2 = ch[f]

        m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # module
        t = str(m)[8:-2].replace('__main__.', '')  # module type
        np = sum(x.numel() for x in m_.parameters())  # number params
        m_.i, m_.f, m_.type, m_.np = i, f, t, np  # attach index, 'from' index, type, number params
        LOGGER.info(f'{i:>3}{str(f):>18}{n_:>3}{np:10.0f}  {t:<40}{str(args):<30}')  # print
        save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelist
        layers.append(m_)
        if i == 0:
            ch = []
        ch.append(c2)
    return nn.Sequential(*layers), sorted(save)


四、Detect类

Detect模块是用来构建Detect层的,将输入featuremap通过一个卷积操作和公式计算到我们想要的shape,为后面的计算损失或者NMS作准备。

Detect模块代码:

class Detect(nn.Module):
    # YOLOv5 Detect head for detection models
    stride = None  # strides computed during build
    dynamic = False  # force grid reconstruction
    export = False  # export mode

    def __init__(self, nc=80, anchors=(), ch=(), inplace=True):  # detection layer
        super().__init__()
        self.nc = nc  # number of classes
        self.no = nc + 5  # number of outputs per anchor
        self.nl = len(anchors)  # number of detection layers
        self.na = len(anchors[0]) // 2  # number of anchors
        self.grid = [torch.empty(0) for _ in range(self.nl)]  # init grid
        self.anchor_grid = [torch.empty(0) for _ in range(self.nl)]  # init anchor grid
        self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2))  # shape(nl,na,2)
        self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output conv
        self.inplace = inplace  # use inplace ops (e.g. slice assignment)

    def forward(self, x):
        z = []  # inference output
        for i in range(self.nl):
            x[i] = self.m[i](x[i])  # conv
            bs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)
            x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()

            if not self.training:  # inference
                if self.dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:
                    self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)

                if isinstance(self, Segment):  # (boxes + masks)
                    xy, wh, conf, mask = x[i].split((2, 2, self.nc + 1, self.no - self.nc - 5), 4)
                    xy = (xy.sigmoid() * 2 + self.grid[i]) * self.stride[i]  # xy
                    wh = (wh.sigmoid() * 2) ** 2 * self.anchor_grid[i]  # wh
                    y = torch.cat((xy, wh, conf.sigmoid(), mask), 4)
                else:  # Detect (boxes only)
                    xy, wh, conf = x[i].sigmoid().split((2, 2, self.nc + 1), 4)
                    xy = (xy * 2 + self.grid[i]) * self.stride[i]  # xy
                    wh = (wh * 2) ** 2 * self.anchor_grid[i]  # wh
                    y = torch.cat((xy, wh, conf), 4)
                z.append(y.view(bs, self.na * nx * ny, self.no))

        return x if self.training else (torch.cat(z, 1),) if self.export else (torch.cat(z, 1), x)

    def _make_grid(self, nx=20, ny=20, i=0, torch_1_10=check_version(torch.__version__, '1.10.0')):
        d = self.anchors[i].device
        t = self.anchors[i].dtype
        shape = 1, self.na, ny, nx, 2  # grid shape
        y, x = torch.arange(ny, device=d, dtype=t), torch.arange(nx, device=d, dtype=t)
        yv, xv = torch.meshgrid(y, x, indexing='ij') if torch_1_10 else torch.meshgrid(y, x)  # torch>=0.7 compatibility
        grid = torch.stack((xv, yv), 2).expand(shape) - 0.5  # add grid offset, i.e. y = 2.0 * x - 0.5
        anchor_grid = (self.anchors[i] * self.stride[i]).view((1, self.na, 1, 1, 2)).expand(shape)
        return grid, anchor_grid

五、BaseModel类

这个模块是整个模型的搭建模块。且yolov5的作者将这个模块的功能写的很全,不光包含模型的搭建,还扩展了很多功能如:特征可视化,打印模型信息、TTA推理增强、融合Conv+Bn加速推理、模型搭载nms功能、autoshape函数:模型包含前处理、推理、后处理的模块(预处理+推理+nms)。感兴趣的可以仔细看看,不感兴趣的可以直接看init和forward两个函数即可。

BaseModel模块代码:


class BaseModel(nn.Module):
    # YOLOv5 base model
    def forward(self, x, profile=False, visualize=False):
        return self._forward_once(x, profile, visualize)  # single-scale inference, train

    def _forward_once(self, x, profile=False, visualize=False):
        y, dt = [], []  # outputs
        for m in self.model:
            if m.f != -1:  # if not from previous layer
                x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layers
            if profile:
                self._profile_one_layer(m, x, dt)
            x = m(x)  # run
            y.append(x if m.i in self.save else None)  # save output
            if visualize:
                feature_visualization(x, m.type, m.i, save_dir=visualize)
        return x

    def _profile_one_layer(self, m, x, dt):
        c = m == self.model[-1]  # is final layer, copy input as inplace fix
        o = thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1E9 * 2 if thop else 0  # FLOPs
        t = time_sync()
        for _ in range(10):
            m(x.copy() if c else x)
        dt.append((time_sync() - t) * 100)
        if m == self.model[0]:
            LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s}  module")
        LOGGER.info(f'{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f}  {m.type}')
        if c:
            LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s}  Total")

    def fuse(self):  # fuse model Conv2d() + BatchNorm2d() layers
        LOGGER.info('Fusing layers... ')
        for m in self.model.modules():
            if isinstance(m, (Conv, DWConv)) and hasattr(m, 'bn'):
                m.conv = fuse_conv_and_bn(m.conv, m.bn)  # update conv
                delattr(m, 'bn')  # remove batchnorm
                m.forward = m.forward_fuse  # update forward
        self.info()
        return self

    def info(self, verbose=False, img_size=640):  # print model information
        model_info(self, verbose, img_size)

    def _apply(self, fn):
        # Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers
        self = super()._apply(fn)
        m = self.model[-1]  # Detect()
        if isinstance(m, (Detect, Segment)):
            m.stride = fn(m.stride)
            m.grid = list(map(fn, m.grid))
            if isinstance(m.anchor_grid, list):
                m.anchor_grid = list(map(fn, m.anchor_grid))
        return self

六、调整模型

1. common.py中生成C2

复制c3生成c2文章来源地址https://www.toymoban.com/news/detail-471586.html

class C2(nn.Module):
    # CSP Bottleneck with 3 convolutions
    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansion
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c1, c_, 1, 1)
        self.cv3 = Conv(2 * c_, c2, 1)  # optional act=FReLU(c2)
        self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))

    def forward(self, x):
        return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))

2. yolo.py的parse_model中增加c2

 if m in {
                Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,
                BottleneckCSP, C2, C3, C3TR, C3SPP, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x}:
            c1, c2 = ch[f], args[0]
            if c2 != no:  # if not output
                c2 = make_divisible(c2 * gw, 8)

            args = [c1, c2, *args[1:]]
            if m in {BottleneckCSP, C2, C3, C3TR, C3Ghost, C3x}:
                args.insert(2, n)  # number of repeats
                n = 1

3. yolov5s.yaml中增加c2

# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 3, C2, [128]], # todo
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 3, C3, [1024]],
   [-1, 1, SPPF, [1024, 5]],  # 9
  ]

到了这里,关于YOLOv5 白皮书-第Y5周:yolo.py文件解读的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Solana白皮书中文翻译(1)

    作者:Anatoly Yakovenko(anatoly@solana.io) 翻译:tangenter.eth 本文提出了一种新的区块链架构,其基础是一种能够验证链上事件发生的先后顺序及时间间隔的新共识算法,称作 工作历史证明 (Proof of History,PoH)。PoH算法能够将不可信任的时间间隔数据打包为区块链账本——一种只

    2024年02月02日
    浏览(68)
  • 以太坊白皮书(中英对照版)

    Ethereum:A Next-Generation Smart Contract and Decentralized Application Platform 以太坊:下一代智能合约和去中心化应用平台 Satoshi Nakamoto’s development of Bitcoin in 2009 has often been hailed as a radical development in money and currency, being the first example of a digital asset which simultaneously has no backing or “intrinsic v

    2024年02月03日
    浏览(54)
  • 海峡链技术白皮书-整体篇

    “引言:海峡链技术白皮书分为《海峡链技术白皮书-整体篇》、《海峡链技术白皮书-开放共识链篇》、《海峡链技术白皮书-开放许可链篇》和《海峡链技术白皮书-IPFS篇》四个章节。《海峡链技术白皮书-整体篇》对海峡链的设计思路、技术框架、产品生态等方面进行了整体

    2023年04月12日
    浏览(63)
  • (四)yolov5--common.py文件解读

     🍨 本文为🔗365天深度学习训练营 中的学习记录博客 🍖 原作者:K同学啊|接辅导、项目定制  参考网址:https://blog.csdn.net/qq_38251616/article/details/124665998                   yolov5 代码解读 --common.py_XiaoGShou的博客-CSDN博客         上次对yolov5s.yaml文件进行了解读,这次在

    2024年02月09日
    浏览(36)
  • 公告|Gear 官方白皮书正式发布!

    Gear 官方白皮书对开发者很有助益,将分为以下部分: Gear 协议的技术原理 Gear 网络架构 Gear 协议的组成部分 Gear 与其他 dApp 开发网络有何不同 为了使大家更好地了解 Gear 网络的愿景,Gear 白皮书涵盖以下内容: 互联网简史,阐述第一代区块链和现代区块链的区别以及它们的

    2024年02月01日
    浏览(45)
  • Chainlink——白皮书简析(whitepaper v2)

            以目前区块链公链比较成熟的生态以太坊为例,为了保证账本的准确性和智能合约执行的确定性,以太坊节点虚拟机会被运行在一个隔离的环境中,因此在虚拟机中运行的智能合约代码无法跟传统编程语言一般直接从链下或者互联网获取数据,所有链下的数据都需

    2023年04月09日
    浏览(39)
  • 《金融数据保护治理白皮书》发布(137页)

    温馨提示:文末附完整PDF下载链接 导读   目前业界已出台数据保护方面的治理模型,但围绕金融数据保护治理的实践指导等尚不成熟,本课题围绕数据保护治理的金融实践、发展现状,探索和标准化相关能力要求,归纳总结相关建设范式,推进数据保护、治理在金融领域的

    2024年02月14日
    浏览(47)
  • 《2023人工智能发展白皮书》发布(118页)

    导读 nbsp; 本白皮书由七大部分组成。第一章人工智能产业链分析,描绘人工智能产业链全景图,并对产业链各环节进行深入分析;第二章人工智能行业环境,明确中国人工智能行业生命周期和竞争结构;第三章人工智能发展概况,阐述国内外人工智能行业发展现状;第四章人工智

    2024年02月09日
    浏览(51)
  • AI 大型语言模型的最佳应用白皮书手册

    目录 What are large language models?什么是大型语言模型? Applications of large language models大语言模型的应用

    2024年02月07日
    浏览(44)
  • 2023通感一体化系统架构与关键技术白皮书

    根据通信与感知的相互关系 通信辅助感知类业务:通信的参考信号作为感知信号,实现目标定位、测速、手势识别等业务——高速可靠的通信能力为感知数据的汇聚提供保障,能够进一步提高感知精度和感知分辨率 感知辅助通信类业务:通过无线感知技术对无线通信环境及

    2024年02月15日
    浏览(47)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包